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Abstract. According to the conventional wisdom, Turing (1950) said that computing machines can
be intelligent. I don’t believe it. I think that what Turing really said was that computing machines
— computers limited to computing — can only fake intelligence. If we want computers to become
genuinely intelligent, we will have to give them enough “initiative” (Turing, 1948, p. 21) to do more
than compute. In this paper, I want to try to develop this idea. I want to explain how giving computers
more “initiative” can allow them to do more than compute. And I want to say why I believe (and
believe that Turing believed) that they will have to go beyond computation before they can become
genuinely intelligent.
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1. What I Think Turing Said

People who try to make computers more intelligent say they are trying to produce
“Artificial Intelligence” (or “AI”). Presumably, they want the word “artificial” to
suggest that the intelligence they are trying to create will — like artificial vanilla
— not have developed naturally.

But some of their critics are convinced that anything that looks like intelligence
in a computer will have to be artificial in another sense — the sense in which an
artificial smile is artificial. Which is to say fake. Computers, they believe, cannot
be genuinely intelligent because they lack a certain je ne sais quoi that genuine
intelligence requires.

The more extreme of these critics believe that what computers lack is funda-
mental. Perhaps they believe that intelligence requires an immortal soul. Perhaps
they feel that it can only be implemented in flesh and blood. Perhaps they believe
that it requires human experiences or human emotions. Such critics believe that
computers cannot be genuinely intelligent, period.

Other critics of AI are a bit more generous. They believe that computers can-
not be genuinely intelligent until... Perhaps they believe that computers cannot
be genuinely intelligent until they have access to better parallel processing or to
special neural networks. Perhaps they believe that computers will need access to
special units that can perform analog operations or utilize quantum effects be-
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fore they can become intelligent. These more moderate critics of AI believe that
computers will only become capable of genuine intelligence when....

In this paper, I want to suggest that both AI and its critics may be right. I believe
that computers already have everything they need to become genuinely intelligent,
but that no amount of work along the lines that AI research typically takes today
will get them there. I believe that today’s AI is riding the right horse (the digital
computer), but that it’s taking it down the wrong road (computation).

And I believe that the problem lies, not in our computers, but in ourselves. Our
computers can become genuinely intelligent, but only if we use them differently
than we are using them today.

If you step back from the details, it is not hard to see where the problem
lies. Turing (1948, p. 21) saw it more than fifty years ago when he suggested
that, in order to be intelligent, computers would have to be given what he called
“initiative”.

Turing (1948, pp. 21–23) discussed “initiative”, but he did not really define it
other than to say that it was not “discipline” — the ability to follow orders given
by others. Then he gave an example (Turing, 1948, p. 22):

A very typical sort of problem requiring some sort of initiative consists of
those of the form ‘Find a number n such that....’ This form covers a very great
variety of problems. For instance problems of the form ‘See if you can find
a way of calculating the function which will enable us to find the values for
arguments....’ are reducible to this form.

Finding such a number is, he wrote, is “clearly equivalent to finding a program”.
It is not surprising that intelligence in computers might require them to be given

some initiative. You have to let people exercise initiative if you want them to behave
intelligently. You cannot expect intelligence from people if you insist that they do
exactly what you tell them to do in exactly the way you tell them. Yet, as long as
we use computers only to compute, we are doing precisely that.

Computing is, of course, what computers were invented to do, but that does not
mean that that they cannot do other things. Screwdrivers were invented to drive
screws, but that does not mean that they cannot be used to pry open paint cans.

One of the things it means for a computer to compute is that it must give us
answers with a sense of finality. If you ask a computer to multiply 1234 by 567,
you expect it to give you the answer (699,678) and stop. You want a result that you
can take back to your laboratory or accounting department.

You don’t want the computer to act up. You don’t want it to add “...but I’m
not sure.” And you certainly don’t want it to call you back later — perhaps after
you have used the number it gave you to approve a drug or report your company’s
earnings — to say it has “changed its mind”. If anybody is going to change their
mind when you’re dealing with a computer, you want it to be you. (“Sorry, I made
a typing mistake. I wanted you to multiply 1234 by 667.”)

And that, I claim, is the problem. If you allow a computer enough “initiative”
so that it can “change its mind”, it can do things that it cannot do if you limit it



COMPUTING MACHINES CAN’T BE INTELLIGENT (...AND TURING SAID SO) 565

to computing. One of those things is to act independently. Another is to behave
intelligently. I want to suggest that they may be related.1

Turing seems to have recognized that a machine’s intelligence might depend on
its ability to “change its mind”. Speaking to the London Mathematical Society in
1947, he said (Turing, 1947, p. 124):

...if a machine is expected to be infallible, it cannot also be intelligent. There
are several mathematical theorems which say almost exactly that. But these the-
orems say nothing about how much intelligence may be displayed if a machine
makes no pretence at infallibility.

He also seems to have realized that intelligence would require more than comput-
ing. And, in the paper that is so often cited to support the claim that he said that
computing would be enough, he quite clearly said that it would not (Turing, 1950,
p. 459)2. I quote:

Intelligent behaviour presumably consists in a departure from the completely
disciplined behaviour involved in computation, but a rather slight one, which
does not give rise to random behaviour, or to pointless repetitive loops.

Turing did not develop this idea very far but, in Turing (1939), he seems to have
given it some thought. He seems to have realized that merely saying that computers
must do more than compute before they can become genuinely intelligent does not
tell you much. It is a bit like saying that China is not in South America. It tells you
where computer intelligence is not, but not where it is.

If you believe that it takes more than computing to produce intelligence, you
might want a map of the uncomputable so that you could figure out where, in the
land of the uncomputable, intelligence lies. Turing tried to develop such a map in
his Ph.D. thesis (Turing, 1939), but he did so in terms of what he called “oracles”
that he did not tell us how to build (because he didn’t know).

What he managed to show was that the land of the uncomputable has a geo-
graphy — that some uncomputable functions are more uncomputable than others.
But he did not tell us where in this geography intelligence might lie, nor how we
might implement machines that could take us there.

Subsequently, Turing (1946) turned his attention to building actual computing
machines. Once such machines had been built, he asked (in Turing, 1950) whether
they could become intelligent. Contrary to the conventional wisdom, I believe that
he argued that they could not. What I think he said was that:
• It will probably be possible to program computing machines — computers

limited to computing — so that they can fake intelligence well enough to fool
human beings.

• It will probably not (repeat not) be possible to program such machines —
limited to computations — to be genuinely intelligent.

Turing’s paper is better known for its first conclusion (although the business
about faking it is usually played down). Turing’s second conclusion is largely
ignored, perhaps because it seems to contradict the main claim of his paper —
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that computing machinery suffices for intelligence. However it does not if you
pay attention to a subtle, but important, distinction. It is possible to argue that
computing machinery can become genuinely intelligent while, at the same time, the
computing machines, that are based on that machinery, cannot. There is a difference
between machinery and machines. -ery matters.

A computer’s machinery consists of the components of which it is made. Those
components operate in certain ways when the machinery is not broken. In contrast,
the machine is that same machinery plus a specification of how that machinery
may be used. As a piece of machinery, a screwdriver can be used to drive screws,
pry open paint cans or clean your fingernails. As a machine, it is limited to driving
screws.

What we call a Turing machine is Turing’s machinery (originally a tape, a read–
write head and a control unit) limited to computing. That same machinery can be
used in other ways. If, for example, we fix the size of its memory at the start, it
becomes a finite automaton. Such a machine is considerably less powerful than a
Turing machine, the size of whose memory is potentially unlimited.

When we use Turing’s machinery to compute (i.e. as a Turing machine), we
take its first output as its result. When we use that machinery as a more powerful
machine that I propose to call 3 a Putnam-Gold machine, we take its last output as
its result. That makes its outputs tentative because we cannot always know when
an output is the last.

Notice that such “machines” use only the machinery of the Turing machine, but
they use it in a different way that (as I will try to show) allows them to do more
than compute. They are my hypercomputers and (as I will also try to show) they
can help us get both a better understanding of what Turing (1950) was driving at
and a better model of what it means to be an intelligent machine.

The role that computations play in the cognitive sciences today is very much
like the role that numbers play in the physical sciences. Just as people working in
the physical sciences often ask that accounts of the physical world be expressed in
numerical terms, so people working in the cognitive sciences today often ask that
accounts of cognitive processes be expressed in computational terms. The belief
of many cognitive scientists is roughly this: “If you can’t give a computational
account of a cognitive process, you haven’t really explained it.”

This assumption helps keep cognitive scientists “honest” in several ways. One
thing it does is to prevent them from ignoring critical details. When you try to give
a computational account of a process — say the process by which we recognize
occurrences of the letter “A” — you have to fill in details that you might otherwise
ignore.

Another thing it does is that it helps prevent them from adopting theories that
could not work. Once you fill in the details of a computational account you can
program it for a computer, run the program, and see whether it does what you think
it does, before you look to see whether the way the program does it is the same as
the way that people do.
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And, if your program really does the job you think it is going to do, you get a
third benefit. A computer, running your program, can do that job for you.

It is largely because they enjoy these benefits of computational accounts of
psychological processes that cognitive scientists are so eager to protect the view
that “thinking can be reduced to computing” against its critics. They worry that, if
this claim turns out to be unfounded, their science may again be reduced to kind of
arm-waving that it used to involve when it was based on introspection, or the kinds
of relatively trivial results it was able to obtain when it was based on the weaker
finite-automaton model of behaviorism.4

I understand this motivation, and I would like to suggest that, even if real in-
telligence is beyond the reach of computability, it may not be necessary to discard
computers as models for intelligence. It may be possible to extend the idea of the
computer as a model in such a way that you end up keeping most of its benefits
while, at the same time, stretching it enough to get that little extra something that
intelligence requires.

I want to suggest that the Putnam-Gold machines do just the right amount
of stretching. And I want to try to convince you that you have to do this much
stretching if you want to produce genuine machine intelligence and to find adequate
models for the genuine natural intelligence with which you and I like to believe we
are so lavishly endowed.

2. Why Computing Is Not Enough

To see what’s wrong with the idea that the human mind is a computing machine,
suppose that it were. Suppose that it had the abilities of a general-purpose com-
puting machine with a few programs, or something like programs, built in at the
start. (We might call these built-in programs instincts.) Since these programs would
probably not be enough, let’s assume that the mind somehow develops additional
programs to help it deal with its particular environment. (We might call the process
by which this comes about learning.) Now suppose that all this mind can do to
develop these new programs is to compute. How might it go about it?

We seem to have two basic choices. We can let the mind chose from among a
(probably infinite) set of totally computable programs — programs that compute a
result for every possible input. Or we can allow it to pick from a set of programs
that includes partially computable ones — ones that might not compute results for
some inputs5.

Let’s call a machine that computes only total functions total and one that can
compute any totally computable function universal. When Turing (1936) defined
his universal Turing machine, he faced a dilemma. He could have either a total
machine or a universal machine, but he could not have both.6 He chose the universal
machine and that machine is the basis of today’s general-purpose digital computer.

We face a similar dilemma when we try to design our computable person. If
we want to endow that person with the capabilities of a programmable computing
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machine, we can allow the machine to be either total or universal, but not both.
Both options have drawbacks.

Suppose that we allow our human mind to use a universal machine to come
up with a program to deal with predators. Since a universal machine can come up
with a partially computable program, the human who uses a program developed
by such a machine might get eaten by a predator for which a program it developed
computed no response.

That problem would be avoided if we limited our human being to totally com-
putable procedures. But now our human being might find itself in an environment
with a predator for which its mind (not being universal) could not come up with a
program.

Both cases could be detrimental to the survival of the species. Fortunately there
is a third alternative. Let the mind fill any potential gap in the possibly partial
programs before it tries to compute a value.

Suppose the mind is allowed to develop programs for a universal machine —
whose values may be undefined for some inputs. To handle the undefined cases,
let the mind start each computation off by producing (internally) an automatic
response to use in case this is one of those no-result cases. Let it then run its
program. If the program computes a result, the human uses it. If it does not, it uses
the automatic response. This fills the gaps in the values of the partially computable
functions with something — not necessarily the best something — that provides
the mind with a response.

That’s fine, but here’s the kicker. If we do that, we end up with a machine that is
no longer a computing machine because it can do things that computing machines
cannot. One such thing is to solve the halting problem

The halting problem is the problem of finding a single program (Halt) that can,
given — as its inputs — both an arbitrary program (Prog) and an input (Inp) to that
program, determine whether or not Prog applied to Inp (or Prog(Inp)) will or will
not halt. In other words, Halt, applied to Prog and Inp (or Halt(Prog,Inp)) must:
• Compute the output YES if Prog(Inp) halts.
• Compute the output NO if Prog(Inp) does not halt.

Turing (1936) proved that no computing machine could solve this problem. But
a gap-filling machine can do it as follows. Let it output NO when it starts and then
let it simulate the behavior of Prog operating on Inp. If the simulation halts, let it
output YES.

It is not hard to see that this process always produces the right result if we take
its result to be the last output it produces. And that it produces it, as a computation
does, in finite time. But, in contrast to a computation, which gets at most one
shot at producing a result, our hole-filling procedure gets two, if it “wants” them.
Following the terminology of Putnam (1965) we might call such a procedure a
two-trial procedure. (In these terms, a computation is a one-trial procedure. It is
allowed only one try at an answer.) A two-trial procedure is allowed to make a
guess and then it may (but need not) “change its mind”.7
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Two-trial machines are only the first of a series of machines that can be imple-
mented by computing machinery and can do more than compute. The more tries
you allow, the more powerful the machine you get. Three-trial machines (allowed
at most8 three tries) can do things that the two-trial kind cannot. And, in general,
an (n + 1)-trial machines can do things that n-trial machines cannot (Kugel, 1977).

If you allow an unlimited (but at most finite) number of outputs, or trials, for
each input and count the last output a machine produces as its result, saying that
the result is undefined if either there is no first or no last, you get a Putnam-Gold
machine.

The difference between a Turing machine and a Putnam-Gold machine does
not seem like much of a difference. You cannot tell whether a machine is a Turing
machine or a Putnam-Gold machine by looking at its machinery. Both computing
machines and Putnam-Gold machines follow the instructions of their programs a
step at a time in a strictly “mechanical” way. But their results have a very different
quality. When we take a machine’s first output as its result we can be sure we have
the final result as soon as we see it. When we take its last output as its result, we
cannot (unless the machine shuts itself off). Its outputs are tentative and we have
to remember that it may “change its mind”.

Such machines implement Turing’s (1948, p. 124) condition of making “no
pretence at infallibility”. In a sense, this idea was also anticipated by Gödel who
wrote (Wang, 1974, p. 325) that:

...the mind, in its use, is not static, but constantly developing... (A)lthough at
each stage of the mind’s development the number of its possible states is finite,
there is no reason why this number should not converge to infinity in the course
of its development.

Gold (1965) suggested that what a Putnam-Gold machine does might be thought of
as computing “in the limit” and that what it does resembles the way we compute the
values of irrational numbers like

√
2 and π in the limit — getting closer and closer

to the exact result at each step, but never getting its decimal expansion “exactly
right”.

It would be nice if we could get along without such numbers whose values are
defined “in the limit”.9 But we can show that such numbers are needed to correctly
characterize the diagonal of the unit square (which by the Pythagorean theorem is
exactly

√
2 units long) and the circumference of the unit-diameter circle (which is

exactly π units long).
To show that the extra power of a Putnam-Gold machine is necessary for intel-

ligence, we need something in the cognitive world that corresponds to the diagonal
of the unit square or the circumference of the unit circle — something that intel-
ligent systems can do that cannot be characterized by a computation. We need,
in other words, some aspect of intelligence that can only be implemented by a
Putnam-Gold machine. And here we face a mildly annoying problem. When we
talk of intelligence, we don’t really know what we are talking about. There seems
to be no generally accepted definition of what “intelligence” is.
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Let’s go look for one.

3. Intelligence and Computing Machinery

Toward the end of the 19th century, the French Ministry of Public Education asked
Alfred Binet to develop a test to measure the ability of schoolchildren to learn. That
test has come to be known as an “intelligence test” so, to start us off, let’s assume
that intelligence is (at least in part) the ability to learn.

To learn what? We learn lots of different kinds of things, but many of them
can be represented by computer programs.10 And many of the things we learn, we
learn from examples. So let’s go further and assume, not only that intelligence is
the ability to learn, but also that it at least includes the ability to learn general ideas
that can be represented by computer programs from examples. That seems to be
what the child does when it learns the grammar of its native language from the
utterances it hears and what it does when it learns the concept of “dog” after seeing
a few tail-wagging examples.

Finding a program is quite different from running one. When we run a program,
we go from a fully specified function, fn, to its values fn(1), fn(2), and so forth.
When we try to go “the other way” — from the values fn(1), fn(2), ... to the
function, fn we seem to “go beyond the information given”, to use Bruner’s (1973)
felicitous phrase. We go from a finite set of values to the infinite values of the
function. When we do that, some of the values we “predict” may be wrong even if
all the values we are given are correct. If, for example, you know that fn(1), fn(2),
fn(3), and fn(4) are all 2, there is nothing that prevents fn(5) from being 73. When
you hear that the plural of “house” is “houses” and of “grouse” is “grouses”, there
is nothing that prevents the plural of “mouse” from being “mice”.

This process of going from the values of a function to a program for evaluating
that function is, I believe, a good model for the process of going from evidence to
theories. Is it also a good model for at least part of what is involved in intelligence?
I think so.

Notice that Binet’s test tried to measure this ability indirectly. Most IQ tests do
not try to see how well you can learn, but how well you have already learned. And
they do that by seeing what “programs” you have learned to use by the time you
take the test. There are obvious practical reasons for this, and it is how we tend to
determine the intelligence of the people we meet. We see what they know and can
do. But I suspect that what we often have in mind when we think of our intelligence
is, not the knowledge we have acquired, but our ability to acquire such knowledge.

Some questions on IQ tests seem to try to measure this ability somewhat more
directly. One popular type of question asks you to extrapolate sequences of in-
tegers. You might, for example, be asked to continue the sequence 2,4,6,8,... The
“correct” continuation is, of course, 2,4,6,8,10,12,14,16,... but that is not the only
possible one. The sequence might have been 2,4,6,8,2,4,6,8,.... or 2,4,6,8,8,8,8,8,...
or even 2,4,6,8, who,do,we,appreciate. The first continuation may be the “right”
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one, but a person who stuck to it after being told that the fifth item in the sequence
was “2” or “8” or “who” would be a fool. Yet that is exactly what a computing (or
one-trial) machine would have to do if it chose its theory of a sequence after seeing
its first four elements.

That does not seem very smart and it is one reason why computations may not
be a good model for intelligence. After they come up with a theory, they are forced
— by the definition of “computation” — to be stupid. They are forced to stick with
their results, after evidence has shown them to be wrong.11 (We might say that they
can “know”, but not “think”.)

Now consider the machine that is allowed to keep the equivalent of an “open
mind”. When it has seen enough evidence to develop a theory, let it output that
theory. But let it also change its theory when that theory no longer fits the evidence.
And, instead of saying that the theory this machine produces is the first one it comes
up with, let’s say that it’s the last. Notice that we now no longer insist that it tell
us when it has finished. Which turns what used to be a computing machine into
a Putnam-Gold machine and will make it (I claim) at least potentially capable of
genuine intelligence.

Of course merely avoiding pig-headedness does not guarantee intelligence. The
ability to change your theory when the evidence goes against it is not enough.
The quality of the theories you come up with matters too. The theory that clas-
sifies emeralds as “grue” — green up to now, but blue ever-after — (Goodman,
1954) changes to remain consistent with the evidence (by changing the meaning of
“now”) as it sees more green emeralds, without being particularly “intelligent”.

There are other kinds of questions on IQ tests that suggest aspects of intelligence
that might also be modeled by Putnam-Gold machines.12 Consider, for example,
questions that ask you to categorize — to distinguish squares from circles, birds
from dogs, and the like. Such categories have enough open-ended-ness to suggest
the need for the kind of flexibility that Putnam-Gold procedures allow. As Wittgen-
stein (1958) has pointed out, concepts can always be stretched to accommodate new
examples. The way we extend concepts over time, or narrow them with experience,
shares some of the flexibility of the way we develop theories and may involve some
of the same kinds of uncomputations. So, I believe, do many other kinds of thinking
that we consider to require intelligence.

4. Genuine Intelligence

The idea that genuine intelligence may require more than computation is not new.
Turing (1948) and Lucas (1961), among others, have suggested that human minds
might be more powerful than computing machines because they can “violate”
Gödel’s (1931) incompleteness theorem according to which no consistent axio-
matic system, powerful enough for arithmetic, can prove its own consistency.

But a Putnam-Gold machine can easily prove the formal consistency of any
formal system of arithmetic (including a system that represents itself), without
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thereby demonstrating its inconsistency. That’s because such systems are not axio-
matic systems.

To see how this might come about, consider Rosser’s (1936) extension of
Gödel’s theorem to formal consistency. Recall that a system is said to be formally
consistent if it cannot prove both a theorem, T, and its negation, ¬ T. Consider a
procedure that takes, as input, a program that represents an axiomatic system A.
To determine whether it is formally consistent, the procedure begins by outputting
“CONSISTENT”. Then it generates the theorems of A one at a time. Each time
it generates a new theorem, it checks it against all the (finitely many) theorems
already generated for a formal inconsistency. If it finds an inconsistency, it outputs
“INCONSISTENT”. Clearly its last output correctly determines the consistency
or inconsistency of A. But the procedure is not a computation. It is the kind of
two-trial procedure of which Putnam-Gold machines are capable.

Thus, if the mind is a Putnam-Gold machine, it can (so to speak) “violate”
Gödel’s (1931) incompleteness theorem. But, of course, it does not (really) violate
that theorem because, like the theorem that says you can’t trisect an angle with
straightedge and compass alone, Gödel’s theorem only tells us what cannot be done
by certain means. Putnam-Gold procedures are not among the means it deals with.

Violating Gödel’s theorem in this way is not something intelligent people typic-
ally do. (Most of them don’t know what it is.) But they do do things that seem
to involve such trial-and-error processes. Developing theories from evidence is
one. And there are (I claim) plenty of others. They include understanding ordinary
English, having a sense of humor, creating art, solving problems, and many other
things.

There are computable ways to do such things as come up with theories from
evidence and there are (as I have suggested) uncomputable ways. Let us say the
computable ways involve fake intelligence and that the less “pig-headed” and un-
computable Putnam-Gold ways involve genuine intelligence. Fake intelligence is
the kind that most of today’s research in Artificial Intelligence seeks to develop in
computing machinery.

There are at least two ways this can be done. A system that displays fake intelli-
gence can compute its theories from evidence or it can take the theories developed
by other systems that use genuine intelligence to develop them.

There is a lot to be said for fake intelligence. It allows us (and our computers) to
use ideas developed by others, which has some of the advantages of the supermar-
ket over the orchard. Developing it in both people and machines can be worthwhile
for its own sake. And I believe that Turing thought that developing it in machines
might be a good first step toward developing genuine machine intelligence.

This is the point that, I believe, Turing (1950) was trying to make when he
suggested the imitation game as a target for research into machine intelligence.
Recall that the imitation game is played between a computer and a person each
of which communicates with a human judge via a computer terminal. Both try to
convince the judge that they are the human and the computer wins if it succeeds.
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To program a computer to play the imitation game, the way it is typically un-
derstood, is to program a computing machine to exercise fake intelligence. The AI
researcher provides the program, which is the part of the whole job that requires
genuine intelligence. The rest of the job — applying the program — is the fake part
that the computer does. In some sense, genuine intelligence seems to involve both
parts of the job and, it seems to me that Turing (1950) may have believed that if we
could figure out how to do this second part of the whole job by machine, it might
make it easier for us to figure out how to do the first — to develop the programs —
by machine.

For a while, it was believed, by many, that the ability to play the imitation game
well would be a good test for machine intelligence. This view was even attributed
to Turing himself, although it seems unlikely that he held it. (See Copeland, 2000,
p. 522.) He certainly did not say that he thought the question “Can a computer win
the imitation game?” is equivalent to the question “Can machines think?” What he
said (Turing, 1950, p. 433) was that it “is closely related to it”.

When Turing was asked, in a BBC broadcast in 1952, if he had a definition of
“think”, he said (Turing, 1952, p. 466) that he was “unable to say anything more
about it than that it was a sort of buzzing that went on inside my head”. And then
he added:

The important thing is to try to draw a line between the properties of a brain,
or of a man, that we want to discuss, and those we don’t. To take an extreme
case, we are not interested in the fact that the brain has the consistency of cold
porridge. We don’t want to say ‘This machine’s quite hard....so it can’t think.’

Drawing that line, rather than defining “thinking” or “intelligence”, may have been
Turing’s main reason for introducing the imitation game. Certainly, the way Turing
(1950) introduced the imitation game suggests that he did not think of it as a test
for genuine intelligence. He described it as a variation of a game in which a man
tries to pretend that he is a woman. But surely nobody would think that a man was
really a woman if he won such a game. A man in drag is not, after all, a woman,
no matter how well his lipstick is applied.

Let me suggest that Turing may have suggested the imitation game as a first
step toward genuine machine intelligence. For fifty years many people assumed it
could also be the last. I don’t think that Turing would have agreed.

5. So What?

The fact that computing machinery can be used both as a computing machine and as
a more powerful Putnam-Gold machine confuses some people. There is an old say-
ing that “If it walks like a duck and talks like a duck, it is a duck.” A Putnam-Gold
machine looks like a computing machine and behaves like a computing machine.
So why is it an uncomputer (or what most of the contributors to this issue call a
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hypercomputer)? The simple answer is “ For the same reason a screwdriver (as a
piece of machinery) can be a paint-can opener. Because we decide to use it as one.”

One way to see the point of the distinction between computing machines and the
more powerful Putnam-Gold machines is to compare it to the distinction between
computing machines and the less powerful finite automata. Although computing
machinery can be used to implement either, Chomsky (1956) was able to argue
against behaviorism (successfully, I believe) with arguments based on this distinc-
tion. Chomsky (1957) argued that behaviorism could, in effect, be characterized
as assuming that the mind was a finite automaton and then showing that this as-
sumption was untenable. He suggested that some kinds of language processing
required an infinite (or at least unlimited) memory which is unavailable to a finite
automaton.

Allowing a memory space without a fixed size limit rather than with it doesn’t
seem like much of a difference. And it seems even less important if you realize that
machines with truly unlimited memories cannot be built. (There is a strict limit on
the amount of memory available to even the largest computer in the real world.)
And yet the distinction has proved useful in both Computer Science and Cognitive
Science. Looking at the computer as though it had an unlimited memory (or space)
changes the way you use it and that, in turn, changes what you can do with it.

Where Turing machines allow unlimited space, Putnam-Gold machines, in ef-
fect, allow for unlimited (not necessarily computably long) periods of time. Look-
ing at information processing systems — theoretical, electronic and biological —
as though they had uncomputably long to come to their conclusions changes a
number of things. It seems, to me, to make them more flexible, more independent,
more fluid, more adaptable, and if I dare say so, more human, than either finite
automata or Turing machines.

Using them as models might change the way we study intelligence in several
ways:
• Mathematics: Gold (1965) suggested that Putnam-Gold machines might be

thought of as computing their results “in the limit”. The mathematics that
deals with such limiting computations might play a role in the cognitive sci-
ences similar to that played by the calculus (which also allows passing to the
limit) in the physical sciences.13

• Artificial Intelligence: If we take the distinction between fake and genuine
intelligence seriously, and recognize the potential value of both kinds of in-
telligence in machines, Artificial Intelligence might divide into two subfields.
One would try to develop fake machine intelligence (which, in spite of the
pejorative name I have given it, clearly has merit) and the other would try to
develop genuine machine intelligence.

• Computer Science: Although Putnam-Gold machines can be implemented
on today’s digital computing machines, it might be worth trying to develop
hardware on which they could be implemented more efficiently14. Software
based on the trial-and-error (or limiting) computations of which Putnam-Gold
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machines are capable might, when developed, facilitate our ability to develop
computer programs.

• Cognitive Science: Scientists studying human intelligence might want to join
those studying machine intelligence in splitting into two sub-fields, one of
which studied fake biological intelligence and the other of which studied
genuine biological intelligence.

• Brain Sciences: Putnam-Gold machines suggest more flexible and adaptable
models of the brain than Turing machines do, and such models might help us
develop better accounts of how the brain works.

• Education: Educators might want to consider the possibility that developing
genuine human intelligence might call for different educational methods than
are called for to develop the fake kind. It is my opinion that what is called
“back to basics” tries to develop fake human intelligence, whereas what is
called “constructivism” tries to develop the genuine kind. It is also my opinion
that both are worth developing.

• Philosophy: Various philosophical matters might be easier to deal with in
terms of Putnam-Gold-machine models of the mind. Understanding free will
might be one. Understanding Searle’s (1980) “Chinese Room” might be an-
other.

Such models might also offer a way to answer Lady Lovelace’s (1843) objection
that (in effect) computers cannot be intelligent because they can only do what they
are told how to do. I believe that Turing (1950, p. 462) got it right when he said:

I agree with Lady Lovelaces’s dictum as far as it goes. But I believe that its
validity depends on how digital computers are used rather than on how they
could be used. (His italics)

If we use computers only to compute we are, in effect, telling them to “Do
what we tell you how to do.” If, on the other hand, we use them as Putnam-Gold
machines to develop their own programs, we are telling them to “Go figure out
what you want to be told to do for yourselves. Don’t just cook with our recipes.
Try to develop your own.”

In other words, we are giving them more initiative. And that may be just what
they need to become genuinely intelligent.

6. Conclusion

I have suggested that the answer to the question “Can computers be genuinely
intelligent?” is “Yes and no.” Computers can be genuinely intelligent, but only if
we let them do more than compute.

Why is that surprising? Why would people think that they, or their computers,
could be intelligent without “changing their minds”, which is what restricting your-
self to computations ties you to?
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I suspect that people are drawn to this bizarre idea because they worry (and
not without reason) about keeping their mind too open. Clearly there are times
when you have to close it and compute. If you’re driving a car and you see a truck
pulling out of a side street in front of you, you’d better come up with an answer
to the question “What shall I do?” quickly and with the sense of finality that a
computation gives you. In such a situation, it is not particularly intelligent to spend
a lot of time developing theories of truck behavior.

Another reason to close your mind about some things is that you don’t want to
think about them. For example, you can’t do a very good job of driving a car if
you keep wondering whether your steering wheel might break at any moment. If
you keep testing it to make sure it’s still OK, you will not only weave back and
forth across the road, but you probably won’t be able to pay enough attention to
the oncoming traffic to avoid an accident. If you try to keep an open mind about
everything, you will so overload your attention-paying capability that you won’t be
able to think effectively about anything.

Unfortunately, some people seem to conclude that, since they can’t keep an
open mind about everything, they shouldn’t keep an open mind about anything.
That accounts for some of the appeal of the computational model of intelligence
according to which an intelligent mind closes itself once a theory or concept has
been “found” or simply uses the theories given to it by others.

It’s true that, once you’ve arrived at a theory of how your steering wheel works,
you can forget about it and focus your attention on the road. You don’t have to
worry that turning it to the right will suddenly make the car turn left. But that
doesn’t mean that you can’t, or shouldn’t, keep an open mind about some things.
You might, for example, want to keep an open mind about whether or not you’ve
missed your turn.

It seems, to me, that there are merits in both a closed mind that can act quickly
(to change the world) and an open mind that can come up with new ideas (to change
itself). I suspect that intelligence requires both.

One problem with an open mind is a lack of certainty. The other day, a friend
asked me what I was up to. I told her that I was writing a paper (this one) in which
I was going to suggest that we change a basic paradigm of Cognitive Science and
Artificial Intelligence.

“That’s huge,” she said.
“It’s only huge,” I replied, “if I’m right. And I don’t know whether I am.”
If we are Putnam-Gold machines (and I believe that, in some sense, we are), we

cannot be sure that we are Putnam-Gold machines. All we can do is to assume that
we are and see where that gets us.15

Let’s.



COMPUTING MACHINES CAN’T BE INTELLIGENT (...AND TURING SAID SO) 577

Acknowledgements

My thanks to Jack Copeland, Jim Gips, Judy Kugel, Margaret Newhouse and
Daniel Osherson for helpful suggestions (not all of which I took).

Notes

1 Marvin Minsky (quoted in Storck, 1997) reports that AI co-founder Nathaniel Rochester was nearly
fired when he “referred to the IBM 701 computer as ‘smart’. The highest officials at IBM...wanted
to reassure their potential customers that IBM products would only do what they were programmed
to do.”
2 It is not easy to say why this sentence is so studiously ignored by people who claim that Turing
(1950) argued that intelligence could be reduced to computation, but I will try to suggest some
possible explanations of this curious phenomenon later in this paper.
3In previous papers (Kugel 1977, 1986) I called such a machine a “trial-and-error” machine. Putnam
(1965) and Gold (1965) came up with the basic idea behind such machines and proved that they
could do the uncomputable. I thought that it might be appropriate to name the machines after them.
4 Recall that Chomsky’s (1957) critique of behaviorism was based on this assumption.
5 The function that computes the sum of two numbers is totally defined because its value is defined
for any two numbers. The function that computes the result of dividing one number by another
is partially defined because the result of dividing (say) 12 by 0 is undefined. But this function is
totally computable because a computation can tell us, by looking for a 0 divisor, when a result
is undefined. The function that computes the halting problem (defined below) is both partial and
partially computable because it is undefined for some arguments and no computation can tell us
every place it is not defined. (For a sketch of a proof, see the next note.)
6 If it were possible to develop a programmable machine that could compute all and only the
totally computable functions, it would also be possible to write a program to list all its programs
in order (P1, P2, P3, ...). In terms of this list you could write a program that would run each of
these programs and thereby compute all the functions (f1, f2, f3, ...) the machine can compute.
Using this program, you could write another program that would totally compute a diagonal function,
d(n) = fn(n) + 1, whose value differs from the value of the n’th function in this list by one. This
function is totally computable, but not computed by this machine (because it differs in at least one
value from any function that is).
7 A two-trial machine may not always be able to announce when it has produced its final result. A
one-trial (or computing) machine always can.
8 But not at least.
9 In 1897, the Indiana State Legislature considered — but did not pass — a bill legislating the
equivalence of π to a rational approximation on the grounds that the approximation was accurate
enough for all practical purposes.
10 Turing seems to have believed that at least some of our knowledge could be represented by
programs. Thus, when Wittgenstein (1976, p. 31) asked “...how many numerals have you learned
to write down?” Turing replied “...I should say aleph null”. The only way that I can think of that
Turing’s finite head might contain the ability to write down an infinite number of numbers is by
containing a program.
11 Another approach to such errors is to attribute them to flaws in the data. That is sound if one is
talking about what Chomsky (1965) has called “performance”. But I am concerned here with what
he called “competence”.
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12 Answering these questions on IQ tests does not require such machines, of course, because IQ tests
are time-limited.
13For some indications as to how this might go, see Jain et al. (1999), Martin and Osherson (1998),
Kugel (1986) and Martin and Osheron’s website: http://www.ruf.rice.edu/%7Eosherson/IL/ILpage.
htm
14 Other papers in this issue contain some ideas in this direction.
15 People who study the machinery of the mind (Descartes and Skinner come to mind) typically
assume that models of the mind can be found among machines of a specific type. Thus behaviorism
thought they could be found among the finite automata. Today’s AI typically assumes that they can
be found among the Turing machines. I am suggesting that we broaden the search to the Putnam-
Gold machines. But this may not be enough. If it is not, the same kind of maneuver that produced
the Putnam-Gold machines from the Turing machines can be repeated again and again to produce
a sequence of ever-more-powerful machines types (Kugel, 1977, pp. 322–328) beyond the Putnam-
Gold machines among which intelligent machines may have to be found.
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