
Toward a Formal Philosophy of Hypercomputation

SELMER BRINGSJORD1,2 and MICHAEL ZENZEN2

1Department of Philosophy, Psychology & Cognitive Science and 2Department of Computer
Science, Rensselaer Polytechnic Institute (RPI), Troy, NY 12180, USA; E-mail: selmer@rpi.edu
zenzem@rpi.edu

Abstract. Does what guides a pastry chef stand on par, from the standpoint of contemporary com-
puter science, with what guides a supercomputer? Did Betty Crocker, when telling us how to bake a
cake, provide an effective procedure, in the sense of ‘effective’ used in computer science? According
to Cleland, the answer in both cases is “Yes”. One consequence of Cleland’s affirmative answer is
supposed to be that hypercomputation is, to use her phrase, “theoretically viable”. Unfortunately,
though we applaud Cleland’s “gadfly philosophizing” (as, in fact, seminal), we believe that unless
such a modus operandi is married to formal philosophy, nothing conclusive will be produced (as
evidenced by the problems plaguing Cleland’s work that we uncover). Herein, we attempt to pull off
not the complete marriage for hypercomputation, but perhaps at least the beginning of a courtship
that others can subsequently help along.

Key words: algorithms, classical and constructivist mathematics, computationalism, effective pro-
cedures, hypercomputation

1. Introduction

First-rate philosophy can be profoundly irritating, especially to non-philosophers.
Socrates showed us that, and thereby inaugurated a tradition Cleland, perhaps un-
wittingly, follows to the letter. She starts with innocent inquiry, pushes and probes,
makes some seemingly innocuous inferences . . . and boom! — suddenly she has
shown that what scientists and engineers take for granted shouldn’t be taken for
granted. Does what guides a pastry chef stand on par, from the standpoint of
contemporary computer science, with what guides a supercomputer? Did Betty
Crocker, when telling us how to bake a cake, provide an effective procedure, in
the sense of ‘effective’ used in computer science? According to Cleland, the an-
swer in both cases is “Yes”. One consequence of Cleland’s affirmative answer
is supposed to be that hypercomputation is, to use her phrase, “theoretically vi-
able”. Unfortunately, though we applaud Cleland’s “gadfly philosophizing” (as,
in fact, seminal), we believe that unless such a modus operandi is married to
formal philosophy, nothing conclusive will be produced (as evidenced by prob-
lems we uncover). Herein, we attempt to pull off not the complete marriage for
hypercomputation, but perhaps at least the beginning of a courtship that others can
subsequently help along.

The plan of the paper is as follows. In Section 2, we provide a primer on
hypercomputation — without which, from our standpoint, philosophizing about
this phenomenon is guaranteed to be unproductive. In Section 3 we introduce a

Minds and Machines 12: 241–258, 2002.
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

242 SELMER BRINGSJORD AND MICHAEL ZENZEN

simple scheme that allows the key issues to be set out in clearer fashion than they
are in Cleland’s work to this point. In Section 4 we share some of the worries
we have about Cleland’s position from the perspective of formal philosophy. In
Section 5, we present encapsulated arguments for our own positions on one of the
— arguably the — key issues identified in Section 2. Finally, in Section 6, we
discuss some of the points Cleland has made in personal communication about
an earlier draft of this paper. It will turn out that there are probably rock-bottom
differences between Cleland and us — differences that are rarely brought out in the
open when computation and the mind are discussed.

2. A Primer on Hypercomputation

The story (at least the contemporary version) begins with Turing, who in his disser-
tation (Turing, 1938, 1939) pondered the possibility of so-called oracle machines.
These machines are architecturally identical to Turing machines, but are assumed
to be augmented with an oracle which, upon being consulted about a Turing ma-
chine m and input i, returns a correct verdict as to whether m halts on i. Oracle ma-
chines are part of the canon of computer science today.1 For example, here’s a quote
from a recently updated classic textbook on computability and uncomputability:

Once one gets used to the fact that there are explicit problems, such as the halt-
ing problem, that have no algorithmic solution, one is led to consider questions
such as the following: Suppose we were given a “black box” or, as one says,
an oracle, which can tell us whether a given Turing machine with given input
eventually halts. Then it is natural to consider a kind of program that is allowed
to ask questions of our oracle and to use the answers in its further computation
. . . (Davis et al., 1994, p. 197).

How do Davis et al. transform this figurative scheme into a mathematically
respectable one? To answer this question, note that instead of Turing machines,
Davis et al. use an equivalent programming language L, the programs of which
are composed of lists of statements with optional labels. L allows for three types
of statements: adding one to a variable V (V ← V + 1), subtracting one from a
variable V (V ← V −1), and moving by a conditional to a line labeled with L in a
program (IF V �= 0 GOTOL). With just these three statements it’s possible to write
a program that computes every Turing-computable function. Traditionally, to make
it easier to see this, “macros” V ← V ′ and GOTO L are allowed. The first macro
moves the contents of variable V ′ to variable V ; the second is an unconditional
branch that moves the active line to the one with label L; both macros can be easily
decomposed into a program written with only the three fundamental statements.
(Readers new to this material are encouraged to carry out the decomposition.) As
an example of an excruciatingly simple program in L, consider a program that

TOWARD A FORMAL PHILOSOPHY OF HYPERCOMPUTATION 243

computes the function f (x1, x2) = x1 + x2
2:

Y ← X1

Z← X2

[B] IF Z �= 0 GOTO A

GOTO E

[A] Z← Z − 1

Y ← Y + 1

GOTO B

At this point we’re in position to see how Davis et al. formalize oracles. The
trick is simply to allow a new statement (an oracle statement) of the form

V ← O(V)

into the syntax of L: “We now let G be some partial function on N [the natural
numbers] with values in N, and we shall think of G as an oracle” (Davis et al.,
1994, p. 198). So if the value of variable V is m before an oracle statement is
encountered, when the statement is then reached, the value of V changes to G(m)
(assuming that G is defined for this argument). As should be plain, there is ab-
solutely no sense in which G is computed. G is just a placeholder for what at
this point is nothing less than magic. In connection, specifically, with the halting
problem, where m1,m2, . . . enumerates all Turing machines, the function

h(m, n) =
{

1 if mm halts with input n
0 otherwise

can be “solved” by a program in L in which an encoding u of m and n is given as
an argument to G.

Unfortunately, this leaves the nature of oracles completely out of the picture.
They are, to say it again, simply magical; all that matters is that they return ver-
dicts that can be used by Turing machines (and their equivalents). The idea so
far, logico-mathematically speaking, is to set up a scheme for investigating rel-
ative computability; and in such a scheme, how oracles do their thing is wholly
irrelevant. For Cleland and the two of us, and other philosophers interested in
hypercomputation, this situation is unacceptable. What is an oracle? How does
it pull off these amazing feats? Fortunately, there are answers: A number of logico-
mathematical devices have been specified to explain how an oracle can accomplish
its amazing work. In fact, just as there are an infinite number of mathematical
devices equivalent to Turing machines (machines running programs from the lan-
guage L visited above, Register machines, the λ-calculus, abaci, . . . ; these are all
discussed in the context of an attempt to define computation in Bringsjord (1994)),
there are an infinite number of devices beyond the Turing Limit. As you might
also guess, a small proper subset of these devices dominate the literature. In fact,
three kinds of hypercomputational devices — analog chaotic neural nets, trial-and-
error machines, and Zeus machines — are generally featured in the literature. In

244 SELMER BRINGSJORD AND MICHAEL ZENZEN

the interests of reaching a wider audience, we discuss only the latter two devices
here.3

Trial-and-error machines have their roots in a paper by Hilary Putnam (1965),
and one by Mark Gold (1965); both appeared in the same rather famous volume
and issue of the Journal of Symbolic Logic. So what are trial-and-error machines?
Well, they have the architecture of Turing machines (read/write heads, tapes, a fixed
and finite number of internal states), but produce output “in the limit" rather than
giving one particular output and then halting. Here is a trial-and-error machine M
that solves the halting problem. Take some arbitrary Turing machine m with input
u; let nm,u be the Gödel number of the pair m, u; place nm,u on M’s tape. Now
have M print 0 immediately (recall the function h, defined above), and then have it
simulate the operation of m on u. If M halts during the simulation, have it proceed
to erase 0 in favor of 1, and then have it stop for good. It’s as easy as that.4

Zeus machines (or “Weyl Machines” from Weyl (1949); see also Bertrand Rus-
sell’s (1936) discussion of the possibility of his embodying such devices) are based
on the character Zeus, described by Boolos and Jeffrey (1989). Zeus is a superhu-
man creature who can enumerate N in a finite amount of time, in one second, in
fact. He pulls this off by giving the first entry, 0, in 1

2 second, the second entry,
1, in 1

4 second, the third entry in 1
8 second, the fourth in 1

16 second, . . . , so that,
indeed, when a second is done he has completely enumerated the natural numbers.
Obviously, it’s easy to (formalize and then) adapt this scheme so as to produce a
Zeus machine that can solve the halting problem: just imagine a machine which,
when simulating an arbitrary Turing machine m operating on input u, does each
step faster and faster . . . (There are countably many Turing machines, and those
that don’t halt are trapped in an unending sequence of the same cardinality as N.)
If, during this simulation, the Zeus machine finds that m halts on u, then a 1 is
returned; otherwise 0 is given.

With this primer now digested, we’re ready to identify the central issues arising
from hypercomputation.

3. Toward Identifying the Central Issues

Cleland tells us that “Effective Procedures and Causal Processes” is “a defense of
the theoretical viability of the concept of hypercomputation” (p. 1). She tells us in
the next sentence that the “received view” is that hypercomputation is not possible.
But what does this mean? What is Cleland’s objective, exactly? One (unlikely)
possibility is that she means to show that hypercomputation is logically possible.
Another is that she intends to show that hypercomputation is physically possible.
Or perhaps she means to maintain that hypercomputation is somehow “humanly
possible.” Yet another option, seemingly consistent with her opening prose, is to
understand her main thesis to be that hypercomputation is logically physically pos-
sible. There are in fact any number of defensible construals that could be laid on
the table, and Cleland’s writings provide insufficient clues as to which to pick.5

TOWARD A FORMAL PHILOSOPHY OF HYPERCOMPUTATION 245

3.1. NEEDED OPERATORS AND PREDICATES

In order to clarify the situation it’s necessary to have on hand at least the bulk of
the relevant operators and predicates. Accordingly, please see Table I. The leftmost
column in that table lists the three main modal operators tacitly invoked by Cle-
land’s discussion of hypercomputation. The column “Computation Predicates” is
based on the fact that computational information processing can be divided into
three categories: processing that can be carried out by machines having less power
than Turing machines (designated by the predicate F , which is intended to sug-
gest finite state automata); processing that can be carried out by machines with
the power of Turing machines and their equivalents (T); and, finally, processing
that can be carried out by machines more powerful than Turing machines (O), for
example, trial-and-error machines.

Table I. Relevant Operators and Predicates

Operators Computation predicates Engineeringish predicates Partitioned domain

�: logically possibly F : FSA computation Hu: unconsciously m1,m2, . . . : mentations

harnessable

�p: physically possibly T : Turing machine Hc: consciously c1, c2, . . . : computations

computation harnessable

�h: humanly possibly O: “Oracle” computation A: actualizable p1, p2, . . . : persons

The rightmost column, “Partitioned Domain,” simply presents the core of a sor-
ted calculus allowing us to conveniently refer to mentations, computations, and per-
sons. Alternatively, we could introduce predicates to range over these sub-domains.

The column “Engineeringish Predicates” is a bit more tricky, and is at the heart
of things. Consider a finite state automaton F1 designed to process strings over
the alphabet A = {a1, a2}; specifically, F1 is designed to accept the language L1

composed of those strings having three consecutive a1’s. Let c denote a compu-
tation carried out by F1. Obviously, we could build a physical device to incarnate
F1; this device could, say, be a toy railroad system whose track is divided into
squares upon which either of the characters a1 or a2 can be written before F1 begins
to operate. We thus say that F1 is actualizable; abbreviated: AF1. What about
the two other predicate letters in the column in question? Well, suppose that we
have actualized F1, and suppose as well that we would like to investigate whether
a1a1a2a2a1a1a1 ∈ L1. We say that F1 can be harnessed because we can use the
automaton to divine the answer (which is of course that the string is a member of
L1). More specifically, we say in this case that F1 can be consciously harnessed,
because a human can formulate a plan that he or she deliberately follows in order
to secure the answer. On the other hand, sometimes the solution to a problem just
“pops into one’s head” through a process that isn’t accessible to conscious thought.
In this case we say that the process is unconsciously harnessable. Overall, what
we verified in the case of F1, where O1/O2/ . . . /On means that any one Oi of the
operators can be selected, is that

246 SELMER BRINGSJORD AND MICHAEL ZENZEN

(1) �h/�p/�∃c(Fc ∧Ac ∧Hcc).

3.2. WHAT ABOUT CLELAND’S OPERATOR?

In personal communication, Cleland has informed us that we are right that some-
thing like “logically physically possible” is her target. But only something like this
operator: Cleland says she has in mind a different operator:

My real target is causal possibility, which is to be distinguished from physical pos-
sibility (which is traditionally construed in terms of the actual physical laws of our
world). A world in which objects (with real valued mass) travel faster than light is
physically impossible (assuming Einstein is right) but nonetheless causally possible
(since Newton might have been right and his laws represent bona fide causal laws
too). Thus, although the idea of “logically physically possible” is close, it is not quite
right since some physical laws (functional laws) are not causal laws. (Cleland, personal
communication, May 28, 2001)

This leaves us quite puzzled. The examples Cleland gives here are perfectly at
home under “logically physically possible”. Letwα be the actual world. That which
is logically possible at wα is that which is true at worlds accessible from wα; that
is, �A at wα iff A is true at some w such that wαRw. If we restrict the accessibility
relation in some way based on the laws of nature at wα , the standard route, then�pA at wα iff A is true at some w such that wαR

′w. To say

��pA
′,

where A′ is some “Newtonian proposition”, then seems to capture Cleland’s Ein-
stein/Newton example very nicely. Intuitively put, a Newtonian proposition is true
at some world physically accessible from some world logically accessible from wα .
We simply don’t understand in the least Cleland’s distinction between physical,
functional, and causal laws. The distinction doesn’t seem to relate to the example
she gives, which, as we point out, is easily handled by standard logics. One would
think that the notion of a causal law that is not a physical law would require that her
operator “causally possible” not be reducible as it apparently is, given her example.
The bottom line is that we doubt very much that the standard formalisms for logical
and physical possibility can’t be easily used to capture what Cleland has in mind.
And if we’re wrong, then, with all due respect, we doubt very much that what
Cleland has in mind is clear and rigorous enough to worry about (see the final
section of this paper).

3.3. THE CENTRAL ISSUES

There are myriad propositions of great interest that can be expressed on the basis
of Table 1, all of which will need to be investigated in a truly mature formal
philosophy of hypercomputation. From our standpoint, what is interesting, and

TOWARD A FORMAL PHILOSOPHY OF HYPERCOMPUTATION 247

ultimately profitable, is to reflect upon patterns created by the various permutations
of the machinery encapsulated in Table 1, and to then head to full-blown logics to
capture these patterns, and their descendants. These new logics would of course
inherit patterns from established intensional logics. For example, it’s because we
know that �hφ → �pφ and �pφ → �φ that we can assert (1). These new logics
would also inherit much from physics, which is revealed by Section 5.2. Here’s
a small fragment of the theses that would presumably be investigated in a mature
philosophy of hypercomputation:

(2) �/�p∃cOc

(3) �/�p/�h∃c(Ac ∧Oc)

(4) �/�p/�h∃c(Hc/Huc ∧Oc)

(5) ∀c(Ac→ Hc/Huc)

There are many other interesting propositions, but perhaps the most import-
ant question is whether it’s humanly possible to build a consciously harnessable
hypercomputer, that is, whether this proposition is true:

(6) �h/�p/�∃c(Oc ∧Ac ∧H cc).

3.4. “STRONG" AI, “WEAK" AI, AND THE SUPERMIND DOCTRINE

The operators and predicates we’ve allowed ourselves also allow reference to men-
tations and persons, and this allows propositions that serve to encapsulate “Weak”
AI, “Strong” AI (= computationalism), and the supermind view we subscribe to,
and explain and defend in our forthcoming book Superminds. “Strong” AI can be
identified with the proposition that

(SAI) ∀m∃c(T c ∧m = c).

“Weak” AI can be be identified with the proposition that

(WAI) ∀m∃c(T c ∧m ≈ c),

where ‘≈’ stands for the relation of simulation. Roughly put, the idea is that all
mentations can be perfectly simulated by Turing computation.6

Finally, as to our supermind view, it can be encapsulated by the following four
propositions. The basic idea behind these propositions, as indicated by Figure 1
(wherein the circle represents superminds) is that human persons comprise at least
three “parts:” one part that engages in information processing at and below the
Turing Limit, one part that engages in such processing above the Turing Limit, and
one part that cannot be expressed in any third-person scheme whatsoever. This last
part includes such things as subjective awareness and qualia.

(SUPER1) ∃m∃c(m = c ∧ T c)
(SUPER2) ∃m∃c(m = c ∧ Fc)

248 SELMER BRINGSJORD AND MICHAEL ZENZEN

Figure 1. Superminds include parts of three spaces

(SUPER3) ∃m∃c(m = c ∧Oc)

(SUPER4) ∃m¬∃cm = c

The kernel of the supermind view is based upon well-known material. Compu-
tation at the level of Turing machines and below is in large part set out in every
comprehensive textbook on computability theory (e.g., Lewis and Papadimitriou,
1981). The supermind view says that human persons can perform feats at this level.
Information processing above the Turing Limit, as we’ve discussed, is also well-
understood mathematically, and the supermind view includes the proposition that
human persons can perform feats at this level. Finally, there are many well-known
arguments for the position that human persons do things that can’t be described
in any symbolic scheme whatsoever (see e.g., Bringsjord, 1992; Searle, 1992;
Jacquette, 1994).

4. Some Problems With Cleland’s Schemes

4.1. ON CLELAND’S ACCOUNT, THE HALTING PROBLEM APPEARS

EFFECTIVELY COMPUTABLE

Cleland (1995) defines a procedure to be effective if and only two conditions hold:
(i) it meets Minsky’s condition [that next step is determined by the present step]

and
(ii) each of the action-kinds [the procedure] specifies invariably has (under normal

conditions) a certain kind of consequence (Cleland, 1995, p. 13).
This definition can’t be right, as is easy to see. For suppose that this definition

is correct, and consider the trial-and-error machine M described in the primer
we gave earlier. Obviously, M satisfies the first condition, because each step is
determined by a prior step in in exactly the same manner that a step in an ordinary
Turing machine is predetermined. Condition (ii) is also clearly satisfied by M,
because each of the action-kinds here has a consequence in a way exactly similar
to that seen in ordinary Turing machines. Since (i) and (ii) are satisfied, it follows

TOWARD A FORMAL PHILOSOPHY OF HYPERCOMPUTATION 249

that M is an effective procedure for solving the halting problem. But if we know
anything rigorous about computability and uncomputability we know that there is
no effective procedure for solving the halting problem. By reductio, then, Cleland’s
account must be wrong.7 (We deal with Cleland’s objections to the argument just
given in Section 6.2.1.)

4.2. QUOTIDIAN PROCEDURES are HOPELESSLY IMPRECISE

By our lights, recipes are laughably vague, and don’t deserve to taken seriously
from the standpoint of formal philosophy, logic, or computer science. Cleland, in
response to this view, tells us that

[Recipes] consist of instructions. Each instruction-expression (e.g., “pat the mozzarella
balls dry with absorbent kitchen paper”) makes reference to an occurrence which is to
be brought about (done) as opposed to undergone or merely happen. That is, each
instruction designates an action, more specifically, since different chefs may apply the
same instruction, an action-type (vs. token). The instructions are expressed by imperat-
ives (e.g., “cut into slices . . . ”), indicating that the follower is to perform the designated
action-types. (Cleland 2001, p. 221).

But it’s hard to take her seriously here. The account she gives is induced from
just one recipe (for mozzarella balls). There are many recipes that don’t “make
reference to an occurrence which is to be brought about (done) as opposed to
undergone or merely happen.” For example, here is a recipe one of us follows
for easy-to-make waffles; it has no “instructions expressed by imperatives”.

Selmer’s Brainless Waffles
• Make sure that 5

2 cups of white flour along with 1
2 cup of whole wheat flour are

in a large bowl, along with 1
4 teaspoon of salt, 4 teaspoons of baking powder,

and 2 teaspoons of sugar — and that these ingredients are mixed together.
• Egg yolks are not desired; 3 whites are needed. Along with 3 cups of fat-free

Lactaid 100© milk, these whites should be mixed by fork or whisk (etc.) into
the dry ingredients.

• The iron (preferably one with the capacity to sound a signal when pre-set
temperature settings are reached) works best when sprayed with non-stick oil,
and when it’s heated to the desired temperature your batter is ready to be
received.

On Cleland’s account, this recipe isn’t a recipe, but it is a recipe; hence her
account is defective. If we use our imagination, we can see that recipes like this
can be followed without doing much. For example, suppose that when setting out
to make some of Selmer’s brainless waffles in my kitchen, you find that a container
of white flour, suspended above one of my counters, is leaking. And suppose that,
as luck would have it, the falling flour is being caught by a measuring cup. We’re
sure you can continue the story in such a way that some brainless waffles are
serendipitously produced. When you serve them to someone who comes down for

250 SELMER BRINGSJORD AND MICHAEL ZENZEN

breakfast, they might say that the waffles are delicious (esp. given than they are fat-
and cholesterol-free), and you might reply that “Well, in following the recipe I was
a bit lucky this morning”.

5. Arguments Against the Conscious Harnessability of Hypercomputation

Due to space constraints, in this section we can only provide a prolegomenon to
a fully developed case against the view that a hypercomputational device can be
built and consciously harnessed. But we believe that this prolegomenon suffices to
point the way to future research and development.8

5.1. THE ARGUMENT FROM INFINITY

Pessimism about physically realizing and harnessing hypercomputational devices
is based, first, upon the observation that to build a hypercomputational device
would be to somehow harness and compress the power of the infinite in a finitely
bounded, physical artifact. Hopefully our little primer on hypercomputation makes
this plain. If you recall this primer, the problem seems obvious in the case of trial-
and-error and Zeus machines. In the former, to build and use them we would need
to be either able to see the future (in order to see the in-the-limit verdict) or to com-
press an infinite period of symbol manipulation into a finite interval. In the latter,
once again, to build and use means to achieve such preternatural compression. In
the case of analog chaotic neural nets the same problem is there, but camouflaged.
An analog chaotic neural net processes information by using irrational numbers
(Siegelmann and Sontag, 1994). So think of the challenge in these terms: Suppose
that you can build a hypercomputational device as long as whenever your device
reaches ordinary computational state s, it carries out operation O on s and irrational
real r ∈ [0, 1]. The operation here has in fact been neatly formalized in the form of
the analog shift map (see Note 3). How do you capture and manipulate r physic-
ally? There is of course a sense in which every time you operate a physical artifact
by in part using readings from an analog dial (the speedometer on a car, e.g.), you
are “using irrational numbers.” But this is a very weak sense of ‘use.’ Your Volvo
may get you to work in the morning, and there may be a sense in which it or parts
of it enter into into physical processes that are uncomputable (which is what people
like Pour-El and Richards (1981a, b) can be read as having probably established).
But to use the Volvo to attack the halting problem seems rather futile. And it’s hard
to imagine an antidote to this futility from any engineer, for any device.

5.2. THREE ARGUMENTS FROM PHYSICS

There are many powerful arguments from physics for the view that it’s humanly im-
possible to build an artifact which engages in hypercomputation that is consciously
harnessed. We give only three here, in the interests of space, and in each case we

TOWARD A FORMAL PHILOSOPHY OF HYPERCOMPUTATION 251

provide only an encapsulated version. A mature, formal philosophy of hypercom-
putation would need to come to grips with the details in all such arguments (and
hence a fully formal philosophy of hypercomputation will include some rigorous
physics and philosophy of physics).

5.2.1. The Argument From Digital Physics

Long before Cleland’s notion of a physics beyond ordinary (= Turing machine)
computation, Feynman (1982) envisioned physics as an exclusively Turing-comput-
ational enterprise fueled by advancing computer technology (that enables sophist-
icated modeling and simulation) — yet Cleland nowhere considers (let alone casts
doubt upon) the strong program of “digital physics” that Feynman inaugurated.
And it isn’t just Feynman’s program Cleland needs to confront: it’s this program
and a pragmatic, positivistically inspired rejection of the real numbers and the
continuum as relevant to physics (Ford, 1983).9

5.2.2. The Argument From the Absence of Candidates

Cleland doesn’t give us any candidates for physical processes that instantiate hy-
percomputation. We are given only the remarks:

Some physical processes may only have a few points at which causal interven-
tion is physically possible, thus allowing one to specify an input and output
relation but not permitting a mechanistic account of what goes on between
input and output. An oracle would be such a process. It is important to keep in
mind, however, that being non-mechanistic is not sufficient for being an oracle.
(Cleland, 2000, p. 18; emphasis ours).

Given what she says here, what would be a likely candidate? It seems that
being “non-mechanistic” is a necessary (but not sufficient) condition. Given this,
and given the impressionistic description of the the type of physical process that
could function as an oracle, one would think that quantum mechanical phenomena
might work. Indeed, these phenomena are quintessentially those where what goes
on between input and output is unavailable (or perhaps it’s better to say that causal
intervention yields an output). If one has hopes of finding some sort of physical
process to function as an oracle, this seems to be a promising place to look. At
least given today’s science, one can hardly get more exotic.

But attempts to access and artifactually exploit these promising phenomena
have not taken us into hypercomputing. Theorists and experimentalist working on
quantum computers have long recognized that this type of machine will only give
us faster Turing computation.10 Now one could, of course, say that we haven’t
exploited all the possibilities. This is true — if one assumes that other candidates
will arrive on the scene in the future. But the issue is plausibility — today. Since
quantum computing has proved to be a dead end, where else should we look? If
Cleland can’t present us with any other promising candidates, the most reasonable
position would seem to be the denial of �p∃cOc and related propositions.

252 SELMER BRINGSJORD AND MICHAEL ZENZEN

The situation is actually worse for Cleland than it appears to be. In order to
see this, let’s grant that physically instantiated oracles exist. We have seen that at
present we have no candidates for such things. So, we need to set off in search
of candidates. But what should our search procedure be? It’s of course vastly
improbable that arbitrary searching will prove successful, so we need help from
our best (current and relevant) theories. But our best theories offer no guidance for
where to look for “causal openings”.

5.2.3. The Argument From Turing Machines and Oracles as Strange Bedfellows

As we saw earlier, Turing’s original speculation involves the concept of a Turing
machine and the concept, vague though it may be, or an oracle. Now for Turing
the oracle is a black box, but it’s supposed to accept digital input and yield digital
output (as is reflected in the primer we offered earlier: recall G). But what reasons
do we have to believe that such concepts can be instantiated as physical processes?
For all we know, even if physically instantiated oracles exist, it may be that when
harnessed and made to function in the service of a Turing machine, they will simply
yield to the Turing machine and march according to its digital tune somewhat like
a free spirited dancer who finds herself in the midst of a marching platoon. Indeed,
when one tries to apply the oracle description to quantum phenomena, it’s evident
why they are unable to serve as oracles for us: The very properties that we wish to
exploit (properties that devolve from the superposition principle and the capacity
to sustain “entangled states”) slip through our hands as soon as we try to exploit
them. It’s as if the delicate properties of quanta cannot survive the complexity and
level of interaction of our quotidian world. So, the question for Cleland is: What
conceivable causal link could there be between a Turing machine and oracle(s)
that, once linked to the Turing machine, would yield hypercomputation?11 What
can it mean to hybridize some physical instantiation of a Turing and a (minimally)
non-mechanistic process?

6. Dialectic — To a Point

As you know by now, having having read to this point, Cleland has kindly provided
objections to an earlier draft of this paper; some of these objections have been
rebutted above. But a number of more serious objections remain; we treat them
in this section. As will soon be seen, this treatment quickly reveals that there are
probably “rock-bottom” disagreements between us and Cleland — disagreements
so fundamental that it’s rather hard to see how any further substantive dialectic is
possible. This paralysis isn’t a bad thing; not at all. On the contrary, it’s a good
thing, because perhaps it’s about time philosophy faces up to the brute fact that
there are rock-bottom disputes lurking at the bottom of philosophy of mind and
computation.

TOWARD A FORMAL PHILOSOPHY OF HYPERCOMPUTATION 253

6.1. MORE ON BRAINLESS WAFFLES

About Selmer’s Brainless Waffles Cleland writes:

I must confess I found the discussion in this section to be a gross distortion
of my account. First, no serious recipe book would express a recipe in the
way that you have expressed “Selmer’s Brainless Waffles.” Second, it is clear
that the expressions that you use (e.g., “make sure”) are non-standard ways of
communicating instructions — any competent speaker of the English language
would interpret them this way. Third, despite what you say, your recipe does
designate physical consequences of action, e.g., that a bowl is to end up (after
activity) containing a certain amount of white flour, whole wheat flour (etc.).
[Fourth] As for your claim that the recipe could be “followed” without doing
anything — produced by serendipity — this trades on an ambiguity between
interpreting your strangely worded “instructions” as bona fide instructions and
interpreting them merely as descriptions of what actually happens. (Cleland,
personal communication, May 28, 2001)

Unfortunately, this won’t do at all. On Cleland’s first point: So what? Nothing
follows from the fact that no serious (hmm, are there serious recipe books?) recipe
book contains recipes like SBW. No serious book on computer programming con-
tains specifications of Turing machines for carrying out anything substantive12 —
but such specifications clearly count as computer programs. Regarding the second
point: Again, so what? The recipe in question clearly lacks “instructions expressed
as imperatives”. Competent speakers of English will doubtless have all sorts of
thoughts about what is going on here — especially if they come upon the container
of leaking white flour that we describe. The third point: Again, alas, so what?
Our claim is that recipes, compared with what we find in books on formal relat-
ive computability,13 are intolerably vague, mired as they are (as we show) in the
mud and fog of natural language. Cleland’s fourth point, unlike the preceeding
trio, is directly relevant. Sure, we are trading on an ambiguity; that’s part of the
point! Who really knows what an instruction is? As we all know, distinguishing
between actions and mere happenings is notoriously difficult. We are not alone
among philosophers in holding that in order to make this distinction one must rely,
at least in part, on the concept of intentionality, which is bogged down in its own
age-old mud and fog. Given this, it seems positively irrational to turn to recipes in
order to make sense of the operation of machines. After all, can a machine have
intentionality? Who knows? This question alone has given rise to fierce debates
that have produced not a shred of consensus. To turn away from the mathematical
accounts of information processing that underlie computer science (and therefore
cognitive science and AI) in favor of the documented disagreement and confusion
swirling around the notion of a recipe does not seem to us particularly wise.

254 SELMER BRINGSJORD AND MICHAEL ZENZEN

6.2. ROCK-BOTTOM DIFFERENCES?

6.2.1. Classical Versus Constructivist Mathematics

Recall that we argued earlier via a particular type of hypercomputer (trial-and-
error machines) that Cleland’s definition of ‘effective procedure’ implies that there
is an effective procedure for solving the halting problem, which is absurd. Cleland
replies:

Your characterization of a trial & error machine as satisfying the second con-
dition of my definition trades on an ambiguity, as is revealed by your comment
that each of its action-kinds has a consequence “in a way exactly similar . . . ”.
. . . In order to solve the halting problem, a t & e machine has to perform
an utterly mysterious action, namely, take the limit of an infinite number of
“guesses” and get the correct answer without actually making an infinite num-
ber of guesses. . . . But such “actions” are not “exactly similar” to what a
Turing machine (let alone, a concrete machine or person) does in any signi-
ficant way? How does one interpret them constructively? (Cleland, personal
communication, May 28, 2001)

There are two objections here. The first is that the actions taken by trial-and-
error machines don’t really match those taken by ordinary Turing machines. The
second objection, which moves the three of us toward a rock-bottom clash, is
that trial-and-error machines cannot be interpreted on the basis of constructivist
mathematics, and so are inadmissible. There are fatal problems infecting both of
these objections.

The problem with the first objection is that when we say that the actions of a
Turing machine are “exactly similar” to the operations of a trial-and-error machine,
we are referring not to some sort of vague, global actions of the sort Cleland seems
to have in mind, but to the individual, primitive actions of such a machine. At
each step, a trial-and-error machine is carrying out actions that are in fact not
only exactly similar, but — and we should have used this stronger language in the
original — exactly the same as a Turing machine. This is even clearer in the case of
the aforementioned hypercomputing Zeus machines, which Copeland (1998) has
aptly called “accelerated Turing machines”. At each step, a Zeus machine (based on
the quadruple formalism for Turing machines) will scan a square, take a primitive
action, and enter a new state. Primitive actions include all and only: moving left
or right one square, and writing some symbol on the square that is being scanned
(after erasing the symbol that may already be there). These are exactly the possible
actions a (quadruple) Turing machine can take at each step. The only difference is
that a Zeus machine can perform infinitely many such actions in a finite amount of
time, by (as we explained above) taking less and less time for each action in a com-
putation. The math needed to fully formalize such so-called “supertasks” is trivial.

This math, however, is classical, and Cleland, in her second objection, says that
bona fide computation needs to be able to be understood constructively. (This is a
point that Cleland made repeatedly in personal communication.) Buy why? Why

TOWARD A FORMAL PHILOSOPHY OF HYPERCOMPUTATION 255

Figure 2. Picture of supertask from seventh grade math.

should one presuppose constructivist mathematics when looking at relative com-
putability? From the standpoint of classical mathematics, there are an infinite num-
ber of theoretically viable, logically physically possible (and perhaps physically
possible, simpliciter) hypercomputers. What does it matter that an idiosyncratic
take on mathematics implies that the theoretical viability of hypercomputation is
not settled?

The notion of a limit, central to elementary calculus, presupposes the coher-
ence of supertasks by the lights of Salmon (1975) and others. Even children are
frequently taught that supertasks are perfectly coherent, because they are prepared
early on, in mathematics, for calculus down the road. (Perhaps the easiest way
to see that constructivism is violently idiosyncratic is to ponder what math edu-
cation would be like if students learned math in accordance with it. (Schechter,
2001) For example, see Figure 2, which is taken from p. 268 of Eicholz et al.
(1995). Bringsjord’s son, Alexander, in the sixth grade, was asked to determine
the “percent pattern” of the outer square consumed by the ever-decreasing shaded
squares. The pattern, obviously, starts at 1

4 , and then continues as 1
16 ,

1
64 ,

1
256 ,

When asked what percent “in the limit” the shaded square consumes of the original
square, Alexander was expected to say “Zero” — but the notion of a limit was a bit
tricky for him (perhaps understandably). When asked what percentage the shaded
square would “get down to” if someone could work faster and faster, and smaller
and smaller, at drawing the up-down and left-right lines that make each quartet of
smaller squares, Alexander said zero. It would be interesting to systematically poll
students about these matters.

256 SELMER BRINGSJORD AND MICHAEL ZENZEN

Cleland will doubtless stick to her guns and maintain a constructivist stance.
Perhaps she would welcome a sea change in math education in order to clear
the way for a thoroughgoing constructivism that would banish now-standard hy-
percomputers. Of course, since we have no plans to reject classical mathematics,
further dialectic on this issue would seem to be otiose. At bottom, the clash may
revolve around radically different conceptions of time. Whereas one of us (Bring-
sjord) routinely teaches supertasks as an innocent, obviously coherent, viable part
of relative computability, it may be that Cleland, in keeping with constructivism,
thinks we humans are immersed in time, that our thought processes are necessarily
temporal, and that we can have no meaningful, coherent, non-temporal experience.
On this view, the very infinitude of the natural numbers is understood in terms of
pure temporal structure and any supertask, because it involves the actual infinite,
cannot be coherent. We leave it to the reader to decide if this view is correct.14

Acknowledgements

We’re greatly indebted to Carol Cleland, not only for the seminal publications we
discuss herein, but also for her gracious e-debate on an earlier draft of our paper.
Thanks are also do to some of our colleagues in the Rensselaer Reasoning Group
(Yingrui Yang, Jim Fahey, Frank Lee, Bram van Heuveln), and to a number of
clever students.

Notes
1We therefore find it exceedingly peculiar that at the outset of her “Effective Procedures and Causal
Processes” Cleland tells us that the “received view” is that hypercomputation is not possible. Hyper-
computation, as shown momentarily, is agreed to be, in many senses, “theoretically viable.”
2Note that a conditional or unconditional branch that directs flow to a label not present in the program
causes halting. In the program here, then, the label E can be read as “exit”.
3Analog chaotic neural nets are characterized by Siegelmann and Sontag (1994). For cognoscenti,
analog chaotic neural nets are allowed to have irrational numbers for coefficients. For the uniniti-
ated, analog chaotic neural nets are perhaps best explained by the “analog shift map,” explained in
Siegelmann (1995), and summarized in Bringsjord (1998). Analog Turing machines with hypercom-
putational power are presented in Bringsjord (2001).
4For full exposition, along with arguments that human persons are trial-and-error machines, see
Kugel (1986), a seminal paper that situates trial-and-error machines nicely within both the formal
context of the Arithmetic Hierarchy and the philosophical context of whether minds are computing
machines.
5But see Section 3.2.
6In personal communication, Cleland asks what “perfect simulation” amounts to. Ostensive defin-
itions have been provided elsewhere by one of us. For example, Bringsford and Ferrucci (2000)
provides a robust example of a Turing machine-level simulation of the mentation involved in produ-
cing belletristic fiction. Simulation in our sense piggybacks on the sense of simulation firmly in use
in computability theory; see, e.g., Lewis and Papadimitriou (1981).
7In connection with this problem, it would no doubt be helpful for Cleland to carefully take account
of the felt need, on the part of logicians and computer scientists, to make clear that printing is far from
non-trivial when one is trying to be precise about information processing. For example, Ebbinghaus

TOWARD A FORMAL PHILOSOPHY OF HYPERCOMPUTATION 257

et al. (1984), in their formal account of Register machines, insist on a PRINT command appearing
exactly once in every Register machine program. Also, careful study of the importance of printing in
such mathematical contexts is discussed by Kugel (1986). It is generally agreed that Minsky, in the
old book that Cleland cites, had a rather immature grasp of some of these issues, and Minsky himself
says that an entire chapter in his book isn’t to be taken seriously as straight logic or mathematics.
8It’s important to note this this prolegomenon isn’t intended to be inconsistent with Cleland’s views.
In general, Cleland doesn’t see the issue of conscious harnessability to be the issue. For her the
crucial issue is whether hypercomputation is “causally possible”. For reasons explained herein, her
issue seems to us to be easily settled: Hypercomputation is obviously causally possible, in no small
part because it’s logically physically possible. What we are concerned with is whether or not human
persons can harness hypercomputation. At least one of us (Bringsjord) believes he has established
that human persons do harness hypercomputation (e.g., see the argument against Church’s Thesis in
Bringsjord and Ferrucci (2000), but these arguments do not imply that human persons consciously
harness hypercomputation.
9For a good review of physics and computation see Feltovich et al. (1983). The hypothesis that
there will be found a single cellular automaton rule that exactly models all of microscopic physics is
explored in Fredkin (1990).
10Quantum computers are discussed in Feynman (1986). Brooks (1999) give a concise discussion
of quantum computation and the status of current research. Deutsch (1985) considers a universal
quantum computer and argues that it is compatible with the Church-Turing Principle. He shows that
this computer wouldn’t be able to compute non-recursive functions.
11Three current models for QMS are spontaneous localization, pilot-waves, and consistent histories.
Physicists/philosophers agree that the principle of superposition is the basic construction rule for the
formalism of QMS; they also agree that this entails “entanglement” and that this entanglement has
been empirically corroborated.
Those concerned with ontology can’t agree on what counts as primitive in the theory. Indeed, some
have argued that QMS refutes a particularist ontology and hence as well the very basis of any “causal
chain” accounts (See e.g., Teller, 1989).
12E.g., a specification of a TM that multiplies is rather complex (see e.g., Boolos and Jeffrey, 1989),
and basic arithmetic is far from what we’re thinking about when we use the term ‘substantive.’
13Relative computability subsumes computability and uncomputability theory.
14It may be that there is another rock-bottom disagreement between us and Cleland: namely, one over
the virtues of formal versus informal philosophy and science. We are deeply distrustful of accounts of
computation and causation which reject what we see as hard-won progress in computer science and
physics toward richer and richer formalization. Cleland, on the other hand, seems deeply distrustful
of formal accounts of computation and causation.

References

Boolos, G.S. and Jeffrey, R. C. (1989), Computability and Logic, Cambridge: Cambridge University
Press.

Bringsjord, S. (1992), What Robots Can and Can’t Be, Dordrecht: Kluwer Academic Publishers.
Bringsjord, S. (1994), ‘Computation, Among Other Things, Is Beneath Us’, Minds and Machines 4,

pp. 469–488.
Bringsjord, S. (1998), ‘Philosophy and ‘Super’ Computation’, in J. Moor and T. Bynam, eds., The

Digital Phoenix: How Computers are Changing Philosopy, Oxford: Blackwell, pp. 231–252.
Bringsjord, S. (2001), ‘In Computation, Parallel Is Nothing, Physical Everything’, Minds and

Machines 11, pp. 95–99.
Bringsjord, S. and Ferrucci, D. (2000), Artificial Intelligence and Literary Creativity: Inside the Mind

of Brutus, a Storytelling Machine, Mahwah, NJ: Lawrence Erlbaum.
Brooks, M. (1999), Quantum Computing and Communications, Berlin: Springer.

258 SELMER BRINGSJORD AND MICHAEL ZENZEN

Cleland, C. (1995), ‘Effective procedures and computable functions’, Minds and Machines 5, pp.
9–23.

Cleland, C. (2000), ‘Effective Procedures and Casual Processes’, Hypercomputation Workshop,
London, England, May 24, 2000.

Cleland, C (2001), ‘Recipes, Algorithms, and Programs’, Minds and Machines 11, pp. 219–237.
Copeland, B. J. (1998), ‘Even Turing Machines Can Compute Uncomputable Functions’, in J. Casti,

ed., Unconventional Models of Computation, London: Springer, pp. 150–164.
Davis, M., Sigal, R. and Weyuker, E. (1994), Computability, Complexity, and Languages: Funda-

mentals of Theoretical Computer Science, New York, NY: Academic Press.
Deutsch, D. (1985), ‘Quantum Theory, The Church-Turing Principle, and The Universal Quantum

Computer’, Proceedings of the Royal Society of London, Series A 400, pp. 87–117.
Ebbinghaus, H. D., Flum, J. and Thomas, W. (1984), Mathematical Logic, New York, NY: Springer.
Eicholz, R. E., O’Daffer, P. G., Charles, R. I., Young, S. I., Barnett, C. S., Clemens, S. R., Gilmer,

G. F., Reeves, A., Renfro, F. L., Thompson, M. M. and Thorntoon, C. A. (1995), Ýit Grade 7
Addison-Wesley Mathematics, Reading, MA: Addison-Wesley.

Feltovich, P., Ford, K and Hayes, P., eds (1983), Proceedings of a Conference on Physics and
Computation, International Journal of Theoretical Physics 21(3/4), 21(6/7), 21(12).

Feynman, R. (1986), ‘Quantum Mechanical Computers’, Foundations of Physics 16, pp. 507–531.
Feynman, R. P. (1982), ‘Simulating Physics With Computers’, International Journal of Theoretical

Physics 21, pp. 467–488.
Ford, J. (1983), ‘How Random Is a Coin Toss?’, Physics Today, pp. 40–47.
Fredkin, E. (1990), ‘Digital Mechanics’, Physica D 45, pp. 20–32.
Gold, M. (1965), ‘Limiting Recursion’, Journal of Symbolic Logic 33(1), pp. 28–47.
Jacquette, D. (1994), Philosophy of Mind, Englewood Cliffs, NJ: Prentice-Hall.
Kugel, P. (1986), ‘Thinking May Be More Than Computing’, Cognition 18, pp. 128–149.
Lewis, H. and Papadimitriou, C. (1981), Elements of the Theory of Computatution, Englewood Cliffs,

NJ: Prentice-Hall.
Pour-El, M. and Richards, I. (1981a), ‘A Computable Ordinary Differential Equation Which

Possesses No Computable Solution’, Annals of Mathematical Logic 17, pp. 61–90.
Pour-El, M. and Richards, I. (1981b), ‘The Wave Equation Computable Initial Data Such That Its

Unique Solution Is Not Computable’, Advances in Mathematics 39, pp. 215–239.
Putnam, H. (1965), ‘Trial and Error Predicates and a Solution To a Problem of Mostowski’, Journal

of Symbolic Logic 30(1), pp. 49–57.
Russell, B. (1936), ‘The Limits of Empiricism’, Proceedings of the Aristotelian Society 36, pp. 131–

150.
Salmon, W. C. (1975), Space, Time and Motion: A Philosophical Introduction, Encino, CA:

Dickenson.
Schechter, E. (2001), ‘Constructivism Is Difficult’, Ýit the Mathematical Association of America

Monthly 108, pp. 50–54.
Searle, J. (1992), The Rediscovery of the Mind, Cambridge, MA: MIT Press.
Siegelmann, H. (1995), ‘Computation Beyond the Turning Limit’, Science 268, pp. 545–548.
Siegelmann, H and Sontag, E. (1994), ‘Analog Computation Via Neural Nets’, Theoretical Computer

Science 131, pp. 331–360.
Teller, P. (1989), Relativity, Relation Holism, and The Bell Inequalities, in J. Cushing and E. McMul-

lin, eds., ‘Philosophical Consequences of Quantum Theory’, Notre Dame, IN: University of
Notre Dame Press.

Turing, A. (1938), Dissertation for the PhD: ‘Systems of Logic Based on Ordinals’, Princeton, NJ:
Princeton University.

Turing, A. (1939), ‘Systems of Logic Based on Ordinals’, Proceedings of the London Mathematical
Society (Series 2) 45, pp. 161–228.

Weyl, H. (1949), Philosophy of Mathematics and Natural Science, Princeton, NJ: Princeton
University Press.

