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Introduction

1.1 Medical imaging

There is an exponential growth of medical image data being produced in current clin-
ical practice for effective patient diagnosis. The clinical benefit of medical image data
for patient care is largely dependent on the quality of the images acquired and the
ability of the radiologist to interpret them. For many years, it has been recognized
that even the best radiologists make errors in the interpretation of medical exams. The
errors that are being made include perception failures and interpretation failures1–5.
Perception errors occur when an abnormality is in the field of view of the reader but
remains undetected. Interpretation errors occur when an abnormality is detected, but
is incorrectly interpreted as normal or benign. These failures can be attributed to radi-
ologist fatigue, limitations in the human visual system, distractions, experience level,
overlapping glandular tissue that (partly) obscures abnormalities, and large volumes
of normal cases in a screening situation.6–12 To reduce these problems, computer aided
detection and diagnosis systems have been designed to help improve detection per-
formance. In the following sections I will describe in detail the history and current
developments on computer aided detection (CADe) and diagnosis (CADx) methods.

1.2 History of computer aided detection

Early attempts at analyzing of abnormalities in radiographic exams with computers
were made in the 1960s.13 In the 1960s and 1970s computers were used to automat-
ically detect and classify abnormalities in medical images, including mammograms
and chest radiographs.14–17 It was thought that computers could replace radiologists
in detecting abnormalities. However, these early attempts were not so successful. The
inferior quality of medical images and limited computing power may have had a detri-
mental effect on the success of these early attempts.

In the 1980s, computerized methods were developed with the intention to aid the
radiologists rather than completely automatic interpretation by computers, focussing
initially on detecting lesions in mammograms and chest radiographs.18,19 In this form,
the radiologists used the output of the CAD system mainly to avoid overlooking ab-
normalities. It is important to note that the final decision was made by the radiologist,
and not the computer system, i.e. CAD was not intended to replace the radiologist, but
was used to aid the radiologist in the detection and interpretation of abnormalities.

A large number of studies have been published in the field of CAD over the past
20 years, going from coarse laboratory tools evaluated on a small number of cases, to
sophisticated CAD schemes and commercial CAD systems that are evaluated on large
clinically relevant databases.
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1.3 CAD techniques

1.3 CAD techniques

Broadly speaking, there are two types of CAD techniques: computer aided detection
(CADe) and computer aided diagnosis (CADx). CADe systems have been developed
to aid radiologists in localizing suspect regions, leaving the characterization and di-
agnosis to the radiologist. It only gives the location of suspect lesions by showing
prompts to the radiologist, and serves as an aid in the detection task. CADe is most
beneficial in screening situations in which many cases need to be interpreted by ra-
diologists, but where many cases are normal, such as breast cancer screening, colon
cancer screening, and lung cancer screening.

CADx systems are used as an aid to further interpret a region or lesion that is al-
ready located by either the radiologist or a CADe system. CADx serves as an aid in
the classification task for differential diagnosis. These systems often present the radiolo-
gist with an estimated probability of malignancy of a suspect region, classifying it into
possibly malignant or likely benign. In addition there are other ways of presenting the
CAD results, which will be discussed in section 1.4.6.

The overall goal of CAD is to reduce the number of perception errors, reduce the
number of interpretation errors, and to reduce the variability between radiologists.

1.4 CAD in breast imaging

CAD has been in use in mammography since the beginning of the CAD research era.
The interpretation of mammograms is one of the most difficult tasks in radiology. Ab-
normal mammographic signs such as calcifications and masses can be very subtle and
are often obscured by dense fibroglandular breast tissue. In the Netherlands, asymp-
tomatic women aged 50 to 75 years are invited for a mammographic examination of
both breasts on a bi-annual basis. Most of the screening mammograms are taken in
mobile mammography units throughout the Netherlands, but some are performed at
hospitals. These include the high risk group of women with a genetic predisposition
of breast cancer, or a family history of breast cancer. Mammograms can be taken from
different angles, where the most common are the mediolateral oblique (MLO) view
and the craniocaudal (CC) view. The MLO view is taken from the side at an angle be-
tween 30 and 60 degrees, and shows more of the breast tissue to be imaged. Also part
of the pectoral muscle is visible in the MLO view. The CC view is taken from above,
and sometimes the area close to the chest wall is not visible. Breast cancer screening
programs have been surrounded by long-running debates concerning its benefit and
harm.20,21 The large volume of cases that need to be interpreted in current screening
makes missing subtle signs of breast cancer a real possibility, and it is thought that
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Introduction

CAD could reduce the chance that radiologists will overlook cancers.
In retrospective reviews in which readers were blinded and read screening mam-

mograms from women who subsequently developed breast cancer mixed with nor-
mal mammograms it was shown that radiologists missed an estimated 20-32% of can-
cers that should have been recalled.22–25 The study by Brem et al.24 indicated that 32%
of the prior mammograms (123/377) had actionable findings. A study by Warren-
Burhenne22 showed similar results, in which 27% (115/427) of screen detected cancers
that had findings visible in the prior mammogram were deemed actionable. Retro-
spective nonblinded reviews show that up to 75% of the missed cancers were visible
on the prior screening mammogram.8,26–29 CADe, therefore, could potentially be very
useful in mammography to reduce the number of false-negatives.

Most CADe systems in mammography focus on the detection of either clustered mi-
cro-calcifications or masses. In general, it is accepted that mass detection is a more chal-
lenging problem than the detection of micro-calcifications, because of the large varia-
tion in appearance of the masses in mammograms and their low contrast compared
to their surroundings.30,31 In recent years there are also efforts to specifically design
CADe schemes for detecting architectural distortion.32–35 These efforts have been de-
scribed extensively in many publications, and the review paper from Giger et al. gives
a complete overview of these efforts.36

CAD for the detection of micro-calcifications has been extensively investigated by a
number of groups, and vary in specific techniques used.37–39 In general, one can iden-
tify some common steps. First the mammogram is segmented into breast tissue and
the background area. Then often the noise is suppressed to enhance the contrast be-
tween the micro-calcifications and background. Candidate selection is performed, and
the micro-calcifications are segmented to extract features that characterize the shape,
size, contrast, and number of micro-calcifications in a cluster. Additional false-positive
reduction techniques are subsequently employed such as neural network classifiers to
distinguish between suspicious micro-calcifications and normal tissue.

CAD for the detection of masses has received a lot of attention since beginning
1990s.40–47 In general, a mass detection scheme contains several steps that are similar
to the micro-calcification detection task. As a first step, the mammogram is segmented
into breast tissue, pectoral muscle (if the image is a MLO view), and background area.
Commonly a pixel classifier is trained with a small set of features, and each pixel in the
breast tissue is classified resulting in a likelihood map. Using a threshold, candidate
locations are selected from this likelihood map and segmented. For each of the can-
didate objects, various features describing the border, contrast, location, texture, pres-
ence of spiculation are calculated. Classifiers, such as the neural network, are used to
classify the mass candidates as a true-positive or false-positive. Many CADe schemes

4



1.4 CAD in breast imaging

described in literature are based on two stage classification approaches.

Most of the current CAD systems detect suspicious lesions independently in single
views. However, in clinical practice radiologists combine information from all avail-
able views. They compare MLO and CC projection views, look for asymmetries in
bilateral mammograms, and compare the current mammograms with the prior mam-
mograms to identify changes. Using all views improves the chance of detecting abnor-
malities and reduction of false-positives. There are several studies conducted that try
to emulate the radiologist’ practice, and incorporate information from multiple views
(bilateral42,48–50 and ipsilateral51–54) to improve detection performance. Comparing cur-
rent with prior mammograms is done routinely by radiologists, to detect new or grow-
ing abnormalities, and consequently there have been efforts to incorporate temporal
information into CAD schemes.55–57

1.4.1 Observer studies

The first observer study that investigated the effect of CAD on the radiologists’ per-
formance was the study in 1990 from Chan et al.58 in which the performance of the
radiologists on the detection of micro-calcifications was compared with and without
the aid of the CADe system. They demonstrated that the detection performance signif-
icantly increased with the use of CADe, and showed the potential usefulness of CADe
systems as a second opinion. It was also clear from this study that it was not necessary
for the CADe system performance to be as high or higher than that of the radiologists
to be an useful aid, as long as it can provide complimentary information. In 1994, a
similar observer study was performed by Kegelmeyer et al.59 that investigated the in-
fluence of CAD for the detection of masses, and since then more studies followed that
showed the positive effect on the detection performance of radiologists.60–62

1.4.2 Potential of CAD

The potential of CAD to identify malignant masses that have been missed by radiol-
ogists was presented by Schmidt in 1996 et al..63 Retrospective analysis showed that
54% of the 69 missed cases in clinical practice were identified by CAD. In a similar
study from 1998, te Brake and colleagues64 showed that 34% of the 65 cancers that
were initially missed by two radiologists were detected by their research CAD sys-
tem. Warren-Burhenne and colleagues22 reported that a more recent version of CAD
(ImageChecker M1000, R2 Technology, Los Altos, CA) successfully marked the missed
cancers in 77% of the false-negative prior mammograms. In the study by Brem et al.24,
the computer-aided detection system detected 63% of the 123 missed cancer cases that
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had a subsequent screening mammogram that led to a cancer diagnosis. These results
suggested that 80 of the 123 cancer cases could have been identified by the radiologists
if they had used CADe.

1.4.3 Prospective clinical trials

The first commercial CADe system for screening mammography was approved by the
Food and Drug Administration (FDA) in 1998. After that time, also other systems
for mammography have obtained FDA approval36. While the use of CADe systems
for screening mammograms has been steadily increasing in the clinic, there is ongo-
ing controversy regarding its clinical benefit. Several studies showed that CADe has
a strong benefit in a laboratory setting, but there are mixed reports on the actual clin-
ical performance.65 Several reports have been published on the performance of these
commercial systems in clinical practice.

The CADET II study66 was a large multi center prospective randomized trial in
which single reading with CAD was compared with double reading involving 31 057
mammograms. This study design reflects more closely the effects of CAD when it is
introduced into screening mammography. The results of this study showed that there
was no significant difference in cancer detection rate between single reading with CAD
and double reading, and that the recall rate for single reading with CAD was 0.5%
higher than that for double reading. This shows that single reading with CAD could
be an alternative to double reading. In an other large prospective study by Gromet67

(231 221 mammograms) CADe increased the sensitivity of a single reader, with only a
small increase in recall rate. In a prospective study in the UK involving 18 096 cases,
Khoo et al.68 showed that single reading with CAD increased the sensitivity over that
of single reading alone by 1.3%. However, double reading by radiologists increased
sensitivity by 8.2%. Morton et al.69 determined prospectively that the use of CADe
increased breast cancer detection by 7.62%, and increased the recall rate from 9.84%
to 10.77% (relative increase of 9.5%). These studies used a sequential reading design
where cases were read first without CAD, immediately followed by an interpretation
where CADe results were displayed. Therefore, the results were collected from the
same patients and the same radiologists.

In studies where the detection performance of radiologists were compared over
two periods of time, before and after CADe was implemented in practice, the results
are less optimistic. A study by Gur et al.70, in which 24 radiologists interpreted 59 139
screening mammograms with, and 56 432 without CADe, reported no statistically sig-
nificant change in breast cancer detection rate. In this study design different patients
are screened, and the radiologists may not be the same in both periods. A more re-
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1.4 CAD in breast imaging

cent study showed even a detrimental effect on radiologists’ performance when CADe
was used. Fenton et al.71 found that the implementation of CADe was associated with
significant increase in recall rate (relative increase of 30.7%) and biopsies with no clear
impact on the early detection of breast cancer (relative increase of 4.5%). The various
outcome of these large published prospective studies are causing a continuous debate
regarding the usefulness of CAD in its current form.

1.4.4 Computer aided diagnosis

Computer-aided diagnosis (CADx) methods are used to aid the radiologist in charac-
terizing an already found abnormality, and in the estimation of its probability of malig-
nancy. Using this additional information radiologists can make a differential diagnosis
(e.g. if a biopsy is justified to further assess the abnormality). The input of a CADx
algorithm could be either a radiologist-detected or a computer-detected location, from
which lesion features are extracted. These features are fed into a classifier and result
into a diagnosis. Already in 1988, Getty et al. showed that when lesion characteristics
that were given by radiologists were merged by a classifier the performance of the radi-
ologists improved.72 In current CADx systems, often computer-extracted features are
used that are calculated from a radiologists’ delineated region or an automatically seg-
mented region from e.g. the CADe system73–76. Examples of these features are presence
of spiculation, micro-calcification cluster distribution, contrast differences, presence of
texture, border characteristics, and others.77

1.4.5 Observer studies

As with computer-aided detection, there are various observer studies conducted in-
vestigating the effectiveness of CADx as an aid to radiologists in the task of distin-
guishing between malignant and benign lesions.61,62,78,79 In all these studies, it was
found that the use of CADx significantly improved the radiologists’ performance us-
ing mammography or breast ultrasound. Recently there are also observer studies pub-
lished that investigated the potential of multi-modal CADx, combining the diagnosis
of mammography and breast ultrasound systems.80,81 Multiple CADx output can be
given separately for these different modalities or be combined into one score using the
features of the available modalities.82

1.4.6 Presentation of CAD results

Conventional CADe systems are used as a technology to help radiologists to avoid
perceptual errors by providing them with visual CADe marks after they have initially
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evaluated the case and a preliminary mental decision is made whether a case should
be recalled or not. The assumption is that significant lesions missed by radiologists,
will be acted upon when CADe marks them. A major complaint from radiologists is
that current CADe systems generate a lot of false-positive prompts, and often cases
are referred based on false CADe prompts while rejecting true CADe prompts. In
addition, many lesions are not missed by perceptual oversight but due to misinterpre-
tation5,83,84. Therefore, conventional CADe may not be the most effective way to avoid
missing cancers, and the current concept may need to be revised to prevent interpre-
tation errors in the screening.85 One of the goals of this thesis is to design an interac-
tive computer-aided detection system that helps the radiologist with decision making,
and to investigate the potential benefits of this approach on the detection performance
of radiologists. Instead of using the traditional prompting approach86,87, where CAD
results are displayed after the radiologist has evaluated the case, in the interactive
approach CAD results are only displayed on request during reading. Basically, this
means that the radiologist reviews the mammogram and selects areas that attracts his
attention to scrutinize further with the help of the CADe system. When a certain area
in a mammogram is queried, CAD information about this location will be displayed
if available. If available, the contour of the region is shown with a level of suspicion
that is computed by the CAD system. This interactive approach is mainly addressed to
avoid interpretation errors, and obviously does not avoid perceptual oversights.88 A
major advantage of this approach is that the radiologists are not burdened with many
of the false-positives of CAD.

The way of presenting CADx results to the radiologist is important allowing the
radiologist to make an optimal decision. In literature there are CADx systems de-
scribed that present the radiologist with an estimated probability of malignancy of a
suspect region classifying it into possibly malignant or likely benign, systems that re-
trieve masses that are similar to the inspected region from a reference database based
on computer extracted features89–92, give qualitative information about features that
describe the suspect region, give a representation of the case in question relative to the
distribution of the normal and abnormal cases in a given population, or a combination
of those80,93.

1.5 CAD in lung imaging

Chest radiography is the most common imaging technique for the diagnosis of pul-
monary diseases, mainly due to low cost and short examination time.94 However, the
detection of pulmonary nodules at an early stage in chest radiographs is an extremely
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1.6 CAD in other diseases

difficult task for radiologists, and up to 90% of the cases that were missed contained
nodules that were visible in retrospect.95–99 CAD for lung disease is an active field of
research, beginning in the 1970s.16,17,100–105 The effect of CAD for lung nodule detec-
tion on radiologists has been extensively investigated and, similar to the studies in
mammography, showed that the radiologists’ performance could be increased using
CAD.100,106–112 In 2001, the first commercial lung nodule CAD system was accepted by
the FDA. However, no large prospective trials have been published that evaluated the
performance of radiologists using this CAD system in clinical practice, to my knowl-
edge.

It is expected that CT has a higher sensitivity for the detection of lung nodules than
chest radiographs, and there have been efforts to develop CAD systems for lung nod-
ule detection on CT scans.113–115 The reported performances vary between studies, due
to different scanning protocols and different data set compositions. Recent retrospec-
tive observer studies indicated that the radiologist performance increased significantly
using CAD for lung nodules on CT scans.116,117 There are also CAD systems for the di-
agnosis of lung nodules investigated, which schemes are comparable to the schemes
for CADx in mammography.118–121

1.6 CAD in other diseases

Another important area of CAD applications is in colon imaging. CADe systems de-
tect polyps that can be a precursor of colon cancer, one of the leading causes of cancer
deaths in the world. The most reliable technique to date is the invasive technique of
colonoscopy. As an alternative, CT colonography (CTC) is being investigated. How-
ever, the interpretation of CTC is time consuming and difficult. Therefore, CADe sys-
tems may be useful to aid the radiologist interpreting CTC to reduce false-negatives
and reader variability. The performance of CADe systems for detecting polyps in CTC
vary a lot among studies, partly due to the small size of data sets that were used to
validate the developed systems. There are no large scale prospective trials reported in
the literature, but several retrospective observer studies indicate the potential of CADe
to improve radiologists’ performance.122,123

1.7 CAD evaluation

In CAD research, we often have to assess the diagnostic performance of a CAD sys-
tem, evaluate differences between CAD systems, and determine the performance of
radiologists using a CAD system as an aid in their decisions. There are a wide range
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Introduction

of these performance evaluation techniques used in this thesis with abbreviations such
as ROC, FROC, LROC, and JAFROC, which have been referred to as an alphabet soup
by Xin He and colleagues. In this section I will briefly describe the evaluation methods
that are used in this thesis.

Receiver operating characteristic (ROC) analysis is a statistical method for analyz-
ing, visualizing and comparing the performance of binary classification tasks. To eval-
uate the performance of a CADx system or observer study, where the task is to classify
a suspicious region into benign or malignant, ROC analysis is typically used. CADe
methods are usually evaluated with free-response ROC (FROC) analysis to visualize
the relation between sensitivity and the average number of false-positives per image
or case, accounting for the localization and detection of abnormalities.
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Figure 1.2: Two examples of a re-

ceiver operating characteristic (ROC)

curve. The system with the dashed

ROC curve performs better than the

system with the solid ROC curve.

In a ROC study, a radiologist or CADx system assigns a rating to each image that
represents the likelihood that the image contains an abnormality124. A plot can then
be made that shows the rating value distributions of the two classes (benign, malig-
nant), of which an example is shown in Figure 1.1. To construct a ROC curve, the true-
positive fraction (TPF) and false-positive fraction (FPF) are computed for each possible
threshold in Figure 1.1, resulting in points through which a curve is drawn or fitted.
Examples of ROC curves are shown in Figure 1.2. The CADx system that produced
the dashed ROC curve is superior to the one that produced the solid curve, since for
every decision threshold the dashed curve is above the other curve, i.e. for any given
specificity the sensitivity is higher. A commonly used measure to summarize the ROC
curve into one number, is the area under the ROC curve (AUC or Az value). An AUC
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value of 0.5 indicates that the system does not perform better than random chance,
and a system with an AUC value of 1 has perfect diagnostic performance. When ROC
curves do not cross, a higher AUC value means better performance in comparison to a
system with a lower AUC value. However, when ROC curves do cross the AUC only
indicates the average performance, and the diagnostic task you want to perform be-
comes very relevant. For example in cancer screening, radiologists perform at a very
low false-positive rate (i.e. at high specificity), making the left part of the curve more
important. In Figure 1.3 an example is given of such situation. The technique pro-
ducing the dashed curve is better in a screening setting than the solid curve. In such
situations a partial area under the curve value can be computed to compare system
performances.

In a classic ROC study, an observer assigns a rating to each image and can only be
applied if the location of the abnormality in the image is known or is not important. In
diagnostic tasks where location is important, an extension of ROC is available: local-
ization ROC (LROC).125 In a LROC study an observer is asked to mark to location of
the suspicious region and provide a rating. The mark provided by the observer is con-
sidered a true-positive if the mark location is close enough to the true location (ground
truth). In a LROC plot the correctly localized true-positives are plotted versus the
false-positive fraction. An example is shown in Figure 1.4. As can be seen, the curve
does not necessarily end at 100% sensitivity in comparison to the ROC curve, because
some true-positives could not have been correctly localized. Also in LROC curves, the
(partial) area under the curve could be computed to compare diagnostic performances,
with the same considerations as for ROC curves when the curves cross. An alternative
measure that can be used, is the mean sensitivity in a false-positive fraction interval.

To evaluate the performance of a CADe system, usually a free-response ROC (FROC)
is employed to understand the relation between sensitivity and average false-positives
per image.126 In a FROC study, the observer (e.g. a CADe system or radiologist) can
report multiple suspicious locations and give them a rating, and it is possible that there
is more than 1 lesion per image as opposed to LROC analysis. To construct a FROC
curve from this data, the fraction of correctly localized true-positives is computed for
each decision threshold, with the associated average number of false-positives per im-
age. A CAD system is better when the curve is higher in the vertical direction (i.e., more
correctly localized true-positive decisions) and steeper (i.e., with fewer false-positives
per image). The area under the FROC curve cannot be used to evaluate performance,
as more false-positives per image also results in a higher area under the FROC curve.
Alternative measures used in literature are the partial area under the FROC curve, or
a mean true-positive fraction (MTPF) in a certain false-positives per image interval.
Original FROC analysis is lesion-based (also sometimes referred to as image-based),
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Figure 1.4: An example of a localiza-

tion ROC curve, often used in observer

studies.

and requires the observer to find the lesion in all available projections. More relevant
in clinical practice is that at least one lesion is found in a patient. Therefore, a lot of
CAD studies perform case-based FROC analysis (Figure 1.5). The only difference of
case-based FROC curves in comparison to the traditional lesion-based FROC curves is
that on the y-axis the fraction of cases (i.e. patients) is shown in which the observer
correctly localized a lesion in at least one of the projection views.

Alternative FROC (AFROC) analysis is a variant of FROC analysis that has the same
vertical axis, but a different definition of the horizontal axis.127 In a FROC curve, the
horizontal axis extends to an arbitrary large number of false-positives per image or
case. In an AFROC curve the horizontal axis indicates the fraction of normal images
containing 1 or more false-positive reports and only the false-positive with the highest
rating is considered. For each decision threshold, the fraction of correctly localized
true-positives is computed and the associated fraction of negative images that have
been falsely recalled. Analogue to ROC studies, the area under the AFROC curve can
be used for performance assessment.

1.7.1 Statistical evaluation

Many statistical tests have been developed to assess if the difference between two ROC
curves is statistically significant. Some of these methods (e.g. a paired or unpaired Stu-
dent’s t test) take only reader variation into account, which means that the drawn con-
clusion can be applied to readers in general, but only to the studies’ specific selection of
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which is similar to the FROC curve

except for its horizontal axis.

cases. Conclusions drawn from methods that take only case variation into account can
be applied to cases in general, but only to the specific readers that participated in the
observer study (e.g. the ROCKIT software128). Better ROC analysis methods take both
reader and case variation into account, which are often called multiple reader, multiple
case (MRMC) methods. A commonly used software package is DBM MRMC129 from
the University of Chicago which uses analysis of variance (ANOVA) methods together
with jackknifing to assess the statistical significance of the observed difference between
two systems.

Statistical methods to evaluate differences between (alternative) free-response ROC
curves are increasingly used and remain an active research topic.130–135 A non-parametric
method to obtain the p-value and confidence intervals is the well-established bootstrap
method.134–136 In this method, cases from the test set are sampled with replacement
a sufficient number of times (e.g. 5000), and for each resampling two FROC curves
for the systems under test are constructed and compared. The figure of merit that is
used in this thesis is the mean true-positive fraction (MTPF) within a particular false-
positive range of the FROC curve, but also other evaluation metrics can be used. After
the resampling procedure, a large number of differences in performance values are
available from which confidence intervals and the p-value can be derived. This non-
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parametric method is preferred when CAD algorithms are being compared.137 For hu-
man observer FROC data, an other well-known method is used: the jackknife alterna-
tive FROC (JAFROC) method133, where the figure of merit is the area under the AFROC
curve, and the statistical significance is determined using ANOVA analysis similar to
the DBM MRMC method.

1.8 Outline

The main objective of this thesis was to optimize computer aided detection techniques
using information from ipsilateral views and to develop and evaluate an alternative
method of presenting computer aided detection results to the radiologists. In current
screening, computer aided detection systems display suspicious mammographic re-
gions as prompts to the radiologists with the intention to avoid perceptual oversights.
However, it has been shown in the literature that interpretation errors might be a more
common cause of missing cancers in screening. In this thesis, we investigated an al-
ternative paradigm of a computer-aided detection system that presents CAD informa-
tion for a suspicious region on request while the radiologist is reading the case. This
method is aimed to help with decision making, rather than to avoid overlooking can-
cers.

The outline of this thesis is as follows. In chapter 2 we compared Bayesian net-
works with support vector machines characterizing mammographic lesions as either
benign or malignant. In this chapter the components of our single view detection and
classification scheme are described. In Chapter 3 we investigated whether a reliable
likelihood measure for a patient being cancerous could be obtained by combining in-
formation available as detected regions from a single-view CAD system from both
mammographic views using a Bayesian approach. In Chapter 4 a probabilistic ap-
proach is presented to link suspicious regions detected by a single-view CAD system
in MLO and CC views based on their correspondence information. In Chapter 5 we
investigated a multi-view scheme to improve case-based mass detection performance
of our single-view CAD system by optimizing the selection of training patterns based
on correspondence information from the previous chapter. In chapter 6 an alterna-
tive paradigm of computer-aided detection systems is proposed where radiologists
are helped with decision making instead of preventing perceptual errors and its ef-
fect on the radiologists’ performance in a screening setting is evaluated. In Chapter 7
the traditional paradigm of CADe (prompting) is compared to the interactive usage of
CADe in mammography. Chapter 8 explores whether this new CAD concept can also
improve detection performance of lung nodules in chest radiography.
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Classification of mammographic masses using SVM and Bayesian networks

Abstract

In this paper, we compare two state-of-the-art classification techniques characterizing
masses as either benign or malignant, using a dataset consisting of 271 cases (131 be-
nign and 140 malignant), containing both a MLO and CC view. For suspect regions
in a digitized mammogram, 12 out of 81 calculated image features have been selected
for investigating the classification accuracy of support vector machines (SVMs) and
Bayesian networks (BNs). Additional techniques for improving their performance
were included in their comparison: the Manly transformation for achieving a normal
distribution of image features and principal component analysis (PCA) for reducing
our high-dimensional data. The performance of the classifiers were evaluated with
Receiver Operating Characteristics (ROC) analysis. The classifiers were trained and
tested using a k-fold cross-validation test method (k=10). It was found that the area un-
der the ROC curve (Az) of the BN increased significantly (p=0.0002) using the Manly
transformation, from Az = 0.767 to Az = 0.795. The Manly transformation did not
result in a significant change for SVMs. Also the difference between SVMs and BNs
using the transformed dataset was not statistically significant (p=0.78). Applying PCA
resulted in an improvement in classification accuracy of the naive Bayesian classifier,
from Az = 0.767 to Az = 0.786. The difference in classification performance between
BNs and SVMs after applying PCA was small and not statistically significant (p=0.11).
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2.1 Introduction

2.1 Introduction

Machine learning techniques to diagnose breast cancer is a very active research area.
Several computer-aided diagnosis (CAD) systems have been developed to aid radiol-
ogists in mammographic interpretation. These CAD systems analyze mammographic
abnormalities and classify lesions as either benign or malignant in order to assist the
radiologist in the diagnostic decision making. Some of them are based on Bayesian net-
works learned on mammographic descriptions provided by radiologists138 or on fea-
tures extracted by image processing139. Another classification technique that is widely
used for the diagnosis of breast tumors are support vector machines140–143. The theoret-
ical advantage of SVMs is that by choosing a specific hyperplane among the many that
can separate the data in the feature space, the problem of overfitting the training data
is reduced. They are often able to characterize a large training set with a small subset
of the training points. Also, SVMs allow us to choose features with arbitrary distribu-
tions, and we do not need to make any independence assumptions. The advantage of
Bayesian networks is that statistical dependences and independences between features
are represented explicitly, which facilitates the incorporation of background knowl-
edge. In this study we compare both classification methods and use two techniques,
namely dimension reduction by principal component analysis (PCA) and a transfor-
mation for achieving a normal distribution of image features, to further improve the
accuracy rate of the classifiers. Recently, the combination of PCA and support vec-
tor machines (SVMs) has been used in medical imaging, where principal component
analysis is applied to extracted image features and the results are used to train a SVM
classifier, but not specifically for mammograms144.

2.2 Materials and methods

The digitized mammograms that were used in this study have been obtained from the
Dutch Breast Cancer Screening Program. In this program two mammographic views
of each breast were obtained in the initial screening: the medio-lateral oblique (MLO)
view and a cranio caudal (CC) view. In this study 271 cases were used. Of these cases,
131 were benign and 140 were malignant. All cases had four-view mammograms.

To each image in the dataset a CAD scheme was applied that was previously devel-
oped in our group145. The CAD scheme consists of the following steps (Figure 2.1):

• Segmentation of the mammogram into breast tissue, pectoral muscle (if image is
a MLO view), and background area
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• Initial detection step resulting in a likelihood image and a number of suspect
image locations (local maxima)

• Region segmentation, by dynamic programming, using the suspicious locations
as seed points

• Final classification step to classify regions as true abnormalities and false posi-
tives.

These steps will be described in more detail in the following subsection.

2.2.1 Likelihood detection

Segmentation of the mammogram The first step of our CAD scheme is the segmenta-
tion of an image into breast tissue and background, using a skin line detection algo-
rithm. Additionally, it finds the edge of the pectoralis muscle if the image is a MLO
view.146 After these steps, a thickness equalization algorithm is applied to enhance the
periphery of the breast147. A similar algorithm is used to equalize background inten-
sity in the pectoralis muscle, to avoid problems with detection of masses located on or
near the pectoral boundary.

Initial mass detection step In this step we use a pixel-level method: for each pixel
inside the breast area there are a small number of features calculated that represent
presence of a central mass and the presence of spiculation44. A neural network clas-
sifies each pixel using these features and assigns a level of suspiciousness to it. The
neural network is trained using pixels sampled inside and outside of a representative
series of malignant masses. The result is an image in which pixel values represents the
likelihood that a malignant mass or architectural distortion is present. This likelihood
image is then slightly smoothed and a local maxima detection is performed. A local
maximum is detected when the likelihood is above a certain threshold and no other
nearby locations have a higher likelihood value. This results in a number of suspicious
locations. Finally an algorithm searches for local maxima that are located closer than
8 mm together and remove multiple candidate locations to avoid multiple suspicious
locations on the same lesion.

Region segmentation Each of the detected local maxima in the previous step are used
as seed points for region segmentation, based on dynamic programming148.

Final classification For each segmented region, 81 features are calculated related to
lesion size, roughness of the boundary, linear texture, location of the region, contour
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smoothness, contrast, and other image characteristics. In the conducted experiments

we used a subset of 12 features out of 81 features. They were selected using a k-nearest
neighbor (KNN) algorithm and sequential forward procedure to find the most useful
features for classifying lesions as benign or malignant. The procedure is described in
detail in previous research149. We will give a short description of the used features in
the following subsection.

2.2.2 Region features

Spiculation features Malignant mammographic densities are often surrounded by a
radiating pattern of linear spicules. For the detection of these stellate patterns of
straight lines directed toward the center pixel of a lesion, two features have been de-
signed by Karssemeijer and te Brake44. The idea is that if an increase of pixels pointing
to a given region is found then this region may be suspicious, especially if, viewed from
that region, such an increase is found in many directions. The first feature Stellateness
1 is a normalized measure for the fraction of pixels with a line orientation directed
towards the center pixel. We call this set of pixels F . For calculating the second fea-
ture Stellateness 2, the circular neighborhood is divided into 24 angular sections. This
feature measures to what extent the pixels in set F are uniformly distributed among
all angular sections. Also the mean values of Stellateness 1 and Stellateness 2 inside the
region are included in the subset.

Region Size Some features depend on the size of the lesion, like the contrast feature.
Bigger lesions have a higher contrast than smaller lesions. This morphological feature
captures this difference.

Compactness Compactness represents the roughness of an object’s boundary relative
to its area. This feature is included because benign masses often have a round or oval
shape compared to a more irregular shape of malignant masses. Compactness (C) is
defined as the ratio of the squared perimeter (P ) to the area (A), i.e.,

C =
P 2

A

The smallest value of compactness is C = (2πr)2

πr2
= 4π which is for a circle. For more

complex shapes, the compactness becomes larger. In our dataset this feature is normal-
ized by dividing the compactness by 4π.

Linear Texture Normal breast tissue often has different texture characteristics than tu-
mor tissue. Therefore Karssemeijer and te Brake44 developed a texture feature that
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Segmentation

Gradient feature

Stellateness
feature

Likelihood
image

Region
segmentationClassification0.92 0.67

Local maxima
detection

Figure 2.1: Schematic overview of the CAD scheme employed in this paper. First the

mammogram is segmented into breast tissue, background tissue and the pectoral mus-

cle. We then calculate at each location two stellateness features for the detection of spic-

ulation and two gradient features for the detection of a focal mass. A neural network

classifier combines these features into a likelihood of a mass at that location, resulting in

a likelihood image. The most suspicious locations on the likelihood image (bright spots)

are selected and used as seed points for the region segmentation. After that, features are

calculated for each segmented region. Finally a second classifier combines these features

into a malignancy score that represents the likelihood that the region is malignant.
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represents presence of linear structures inside the segmented region. Malignant le-
sions tend to have less linear structures than normal tissue or benign lesions.

Relative Location The relative location of a lesion is important since more malignan-
cies develop in the upper outer quadrant150 of the breast toward the armpit. Therefore,
some features have been constructed that represent the relative location of a lesion us-
ing a new coordinate system77. This internal coordinate system is different for MLO
and CC views. In MLO views the pectoral edge is used as the y-axis. The x-axis is
determined by drawing a line perpendicular to the y-axis where the distance between
the y-axis and the breast boundary is maximum. We assume that the end of this line is
close to the nipple. In CC views the chest wall is used as y-axis. In this internal coor-
dinate system we calculate the x- and y-location of the centre of the segmented region

and normalize with the effective radius of the breast r =
√

A
π

, where A is the size of the
segmented breast area. In this way, positions of cancers in different mammograms can
be compared.

Maximum Second Order Derivative Correlation This border feature indicates the
smoothness of the contour and is especially useful to discriminate between benign and
malignant lesions. Most benign lesions have a well-defined contour and the margins
of these lesions are sharply confined with a sharp transition between the lesion and the
surrounding tissue which indicates that there is no infiltration77.

Contrast Regions with high contrast or a higher intensity than other similar structures
in the image are more likely to be a mass since tumor tissue on average absorbs more
X-rays than fat and also slightly more than glandular tissue. The distance measure we
used to indicate differences in contrast is the squared difference in intensity between
the segmented region and its surround, divided by both standard deviations,

(Y (R)− Y (S))2

σY (R) + σY (S)

where R is the set of pixels in the segmented region, S is the set of pixels in the
surroundings of the segmented region. Y (X) is the mean grey level of the pixels in set
X, and σY (X) is the grey level standard deviation of the pixels in set X.

Number of Calcifications The presence of clustered microcalcifications is one of the
most important signs of cancer on a mammogram. They occur in about 90% of the
non-invasive cancers. Therefore we include a feature representing the number of cal-
cifications found in the segmented region.
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Mean Std dev Min Max Skewness Kurtosis
Benign (cases: 258)
Stellateness 1 1.1256 0.1710 0.7800 2.1400 2.3002 13.4307
Stellateness 2 1.0241 0.1160 0.8300 2.1900 4.7815 44.8670
Stellateness 1 Mean 1.1189 0.1316 0.8600 1.5630 0.8565 3.6986
Stellateness 2 Mean 1.0215 0.0713 0.8380 1.2990 0.5482 3.6256
Region Size 0.4070 0.3915 0.0200 3.4510 3.0272 17.9799
Contrast 0.5502 0.2558 0.1260 2.0110 1.9986 9.8575
Compactness 1.2141 0.0906 1.0470 1.5600 0.9308 3.8448
Linear Texture 0.1750 0.1444 0.0130 1.0240 2.2365 10.1391
Relative Location X 0.6705 0.3024 -0.0670 1.5470 0.0470 2.7819
Relative Location Y 0.2160 0.4262 -0.9680 1.2990 -0.2289 2.4769
Max. 2nd order Drv Corr. 0.6800 0.1008 0.4520 0.9060 0.0436 2.3011
Number of Calcifications 0.7871 2.6723 0.0000 19.0000 3.8831 19.2635
Malignant (cases: 274)
Stellateness 1 1.2273 0.1730 0.8200 1.7300 0.5060 3.0005
Stellateness 2 1.0827 0.0965 0.7900 1.3500 0.1468 2.8634
Stellateness 1 Mean 1.2357 0.1736 0.8290 1.7740 0.6844 3.1281
Stellateness 2 Mean 1.0868 0.0946 0.8530 1.4140 0.4533 3.0175
Region Size 0.4471 0.3272 0.0160 1.8040 1.2728 4.4259
Contrast 0.6272 0.2777 0.0110 1.5090 0.7688 3.2074
Compactness 1.2111 0.0983 1.0410 1.7080 1.5022 6.3482
Linear Texture 0.1578 0.1161 0.0040 0.9490 2.2258 11.5829
Relative Location X 0.6130 0.3046 -0.0710 1.3080 0.0140 2.3298
Relative Location Y 0.2080 0.4449 -0.9770 1.2180 -0.2483 2.7594
Max. 2nd order Drv Corr. 0.6354 0.0951 0.4040 0.9320 0.1608 2.9336
Number of Calcifications 2.0645 6.7471 0.0000 50.0000 4.4524 25.7707

Table 2.1: Statistics of benign and malignant cases in the used dataset

2.2.3 Statistical analysis

For every feature the first four moments of the distribution of feature values in the
dataset have been computed. These are shown in Table 2.1. The third moment, skew-
ness, is a measure of the lack of symmetry. The skewness for a normal distribution is
zero, and any near-symmetric data should have a skewness near zero. The fourth mo-
ment, also called kurtosis, is a measure of whether the data are peaked or flat relative
to a normal distribution. The kurtosis for a standard normal distribution is three.

Combining the 12 features of the MLO views with the 12 features of the correspond-
ing CC views gives a total of 24 features per case. The continuous output of the clas-
sifier is analyzed using ROC methodology, using the LABROC program151 of Metz et
al. The statistical significance of the difference between ROC curves was tested using
the CLABROC program152 of Metz et al. The classifiers were trained and tested using
a k-fold cross-validation test method (k=10), in which each of 10 different combina-
tions of training and test data sets included 244 and 27 cases, respectively. For each
test partition, the classification accuracy was evaluated as the area Az under the ROC
curve.
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2.2.4 Naive Bayesian classifier

The naive Bayesian classifier (Figure 2.2) is a Bayesian network with a limited topol-
ogy153 applicable to learning tasks where each instance is described by a conjunction
of feature values and a class value. To learn the Bayesian network a set of training ex-
amples has to be provided. Classification using this Bayes’ probability model is done
by picking the most probable hypothesis which is also known as the maximum a pos-
teriori. The corresponding classifier function can be defined as follows:

CMAP = arg max
cj∈C

P (cj|f1, f2, . . . , fn) (2.1)

where {f1, f2, . . . , fn} is the set of feature values that decribe the new instance, and
CMAP is the most probable hypothesis. Using Bayes theorem, Equation 2.1 can be
rewritten as follows:

CMAP = arg max
cj∈C

P (cj)P (f1, f2, . . . , fn|cj)
P (f1, f2, . . . , fn)

= arg max
cj∈C

P (cj)P (f1, f2, . . . , fn|cj) (2.2)

Using training data the two terms P (cj) and P (f1, f2, . . . , fn|cj) have to be calculated.
The class prior probability P (cj) can be easily estimated by counting the frequency of
occurence of the class value cj in the training data. However, estimating the different
P (f1, f2, . . . , fn|cj) terms is difficult and is only possible if a huge set of training data
is available. To dramatically simplify the classification task we can use the following
simplifying assumption: each feature fi is conditionally independent of every other
feature fj for i 6= j. This fairly strong assumption of independence leads to the name
naive Bayes, with the assumption often being naive in that, by making this assumption,
the algorithm does not take into account dependencies that may exist. By using the
conditionally independence assumptions we can express Equation 2.2 as:

CMAP = arg max
cj∈C

P (cj)
n∏
i=1

P (fi|cj) (2.3)

The model in this form is much more manageable, since it factors into a so-called class
prior probability P (cj) and independent probability distributions P (fi|cj). These class
conditional probabilities P (fi|cj) can be calculated separately for each variable which
reduces complexity enormously. Even with such strong simplifying assumptions, it
does not seem to greatly affect the posterior probabilities, especially in regions near
the decision boundaries which leaves the classification task unaffected. Some papers
show that such naive Bayesian classifiers yield surprisingly powerful classifiers154.
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Figure 2.2: A graphical representation of a naive Bayesian classifier

2.2.5 Support vector machines

The SVM algorithm has been introduced by Cortes and Vapnik140 for solving classifi-
cation tasks and have been successfully applied in various areas of research. The basic
idea of SVM is that it projects datapoints from a given two-class training set in a higher
dimensional space and finds an optimal hyperplane. The optimal one is the one that
separates the data with the maximal margin. SVMs identify the datapoints near the op-
timal separating hyperplane which are called support vectors. The distance between
the separating hyperplane and the nearest of the positive and negative datapoints is
called the margin of the SVM classifier. The separating hyperplane is defined as

D(x) = (w · x) + b (2.4)

where x is a vector of the dataset mapped to a high dimensional space, and w and b

are parameters of the hyperplane that the SVM will estimate. The nearest datapoints
to the maximum margin hyperplane lie on the planes

(w · x) + b = +1 for y = +1

(w · x) + b = −1 for y = −1 (2.5)

where y = +1 for class ω1 and y = −1 for class ω2. The width of the margin is given
by m = 2

||w|| . Computing w and x is then the problem of finding the minimum of a
function with the following constraints:

minimize m(w) =
1

2
(w · w)

subject to constraints yi[w · xi + b] ≥ 1 (2.6)

In its simplest form, a SVM attempts to find a linear separator, as shown in Figure 2.3.
In practice however, there may be no good linear separator of the data. In that case,
SVMs can project the dataset to a significant higher dimensional feature space to make
the separation easier, using a kernel function to produce separators that are non-linear.
Unfortunately there is no theory about deciding which kernel is the best155.
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Figure 2.3: Linear separating hyperplanes for the separable case.

2.2.6 Preprocessing: Manly transformation

Many Bayesian learning algorithms that deal with continuous nodes, including the
learning algorithms in Kevin Murphy’s Bayesian Networks Toolbox156, are based on
the assumption that the features are normally distributed. Unfortunately, most of the
image features we use do not follow a normal distribution. We used Manly’s exponen-
tial transformation to make the non-normal data resemble normal data by reducing
skewness, which is a transformation from y to y(λ) with parameter λ. This transform is
most effective if the probability distribution of a feature can be described as a function
which contains powers, logarithms, or exponentials. The transform is given by:

y(λ) =

 eλy−1
λ

if λ 6= 0

y if λ = 0
(2.7)

The assumption made by this transformation is that y(λ) follows a normal linear
model with parameters β and σ2 for some value of λ. Given a value of λ, we can
estimate the linear model parameters β and σ2 as usual, except that we work with
the transformed variable y(λ) instead of y. To select an appropriate transformation we
need to find the optimal value of λ using an optimization criteria. We used a technique
based on the normal probability plot. The data is plotted against a theoretical normal
distribution in such a way that the points should form an approximate straight line if
the data is normal distributed. Deviations of this straight line mean that the data is less
normally distributed. We can use that property to plot the correlation coefficient of the
normality plot against a range of λ’s. The lambda resulting in the largest correlation
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Figure 2.4: An example Manly transformation: (a) histogram of a feature that is Weibull

distributed, (b) normality plot of the feature, (c) histogram of the transformed feature,

and (d) normality plot of the transformed feature

coefficient is chosen.

2.2.7 Preprocessing: principal component analysis

One might think that the use of more features will automatically improve the clas-
sification power of the classifier. However the number of samples needed to train a
classifier with a certain level of accuracy increases exponentially with the number of
features. Therefore, we used principal component analysis157 as a preprocessing tech-
nique to reduce the dimensionality of our dataset. The assumption made in PCA is that
most of the information is carried in the variance of the features: the higher the vari-
ance in one dimension (feature), the more information is carried by that feature. The
general idea is therefore to preserve the most variance in the data using the least num-
ber of dimensions. One of the major drawbacks of PCA is that it is an unsupervised
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Figure 2.5: Case based performance naive
Bayes classifier after dimensionality re-
duction with PCA, averaged over 5 runs.
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Figure 2.6: Case based performance SVM
classifier with radial kernel function after
dimensionality reduction with PCA, aver-
aged over 5 runs.

algorithm, i.e., it does not take the class label in account. It can therefore eliminate a
dimension that is best for discriminating positive from negative cases.

2.3 Results

The dataset we used contained a lot of features that were highly skewed and therefore
did not follow a normal distribution. The learning algorithms in Murphy’s BNT tool-
box156 for Bayesian networks with continuous nodes, assume that within each state of
the class the observed continuous features follow a normal distribution. These contin-
uous nodes have therefore two parameters per class, mean and variance, to represent
the characteristics of the training data. We evaluated the classification performance of
the naive Bayes classifier after applying the Manly transformation on the dataset. The
Stellateness Mean and the Maximum Second Order Derivative Correlation features are ap-
proximately normal distributed in their original form and did not perform well when
transformed. We chose therefore to not transform these features. Also the Number of
Calcifications feature was not a useful candidate to transform, because of its discrete
nature. Statistical information about the transformed dataset can be found in Table 2.2.

The calculated area under the ROC curve (Az value) of the Bayesian classifier with-
out transforming the dataset was 0.767. After applying the Manly transformation it
increased to 0.795, which is statistically significant (p=0.0002). For the SVM classifier,
the Manly transformation had no noticeable effect on the performance. Comparing the
performance between BNs and SVMs using the transformed dataset showed that the
difference was not statistically significant (p=0.78).

Additionally, we evaluated the classification performance of the naive Bayesian
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Mean Std dev Min Max Skewness Kurtosis
All cases (cases: 542)
Stellateness 1 0.5102 0.0229 0.4351 0.5799 0.0000 3.1743
Stellateness 2 0.4077 0.0095 0.3739 0.4495 0.0000 3.7745
Stellateness 1 Mean 1.1790 0.1653 0.8290 1.7740 0.8638 3.5949
Stellateness 2 Mean 1.0551 0.0902 0.8380 1.4140 0.6548 3.4349
Region Size 0.2148 0.0878 0.0157 0.3706 0.0000 1.9075
Contrast 0.3599 0.0924 0.0109 0.5939 0.0000 2.7383
Compactness 0.2070 0.0002 0.2063 0.2076 0.0000 2.4822
Linear Texture 0.0931 0.0381 0.0040 0.1725 0.0000 2.3284
Relative Location X 0.6312 0.2974 -0.0711 1.5016 0.0000 2.5448
Relative Location Y 0.2404 0.4554 -0.8736 1.5173 0.0000 2.5943
Max. 2nd order Drv Corr. 0.6571 0.1004 0.4040 0.9320 0.1290 2.5924
Number of Calcifications 1.4446 5.2255 0.0000 50.0000 5.4429 39.8079

Benign (cases: 263)
Stellateness 1 0.5029 0.0219 0.4351 0.5799 0.2717 4.1962
Stellateness 2 0.4047 0.0091 0.3806 0.4495 0.5072 5.8195
Stellateness 1 Mean 1.1189 0.1316 0.8600 1.5630 0.8565 3.6986
Stellateness 2 Mean 1.0215 0.0713 0.8380 1.2990 0.5482 3.6256
Region Size 0.2048 0.0882 0.0195 0.3706 0.1791 1.9413
Contrast 0.3463 0.0865 0.1140 0.5939 0.2547 2.8499
Compactness 0.2070 0.0002 0.2063 0.2075 -0.1018 2.4716
Linear Texture 0.0946 0.0396 0.0125 0.1725 -0.0221 2.2135
Relative Location X 0.6601 0.2946 -0.0671 1.5016 0.0159 2.7614
Relative Location Y 0.2437 0.4457 -0.8665 1.5173 -0.0159 2.4540
Max. 2nd order Drv Corr. 0.6800 0.1008 0.4520 0.9060 0.0436 2.3011
Number of Calcifications 0.7871 2.6723 0.0000 19.0000 3.8831 19.2635

Malignant (cases: 279)
Stellateness 1 0.5171 0.0217 0.4456 0.5636 -0.2453 2.9714
Stellateness 2 0.4106 0.0090 0.3739 0.4301 -0.4677 3.4270
Stellateness 1 Mean 1.2357 0.1736 0.8290 1.7740 0.6844 3.1281
Stellateness 2 Mean 1.0868 0.0946 0.8530 1.4140 0.4533 3.0175
Region Size 0.2242 0.0864 0.0157 0.3678 -0.1658 1.9722
Contrast 0.3728 0.0960 0.0109 0.5640 -0.2511 2.8418
Compactness 0.2070 0.0002 0.2063 0.2076 0.0943 2.5107
Linear Texture 0.0917 0.0365 0.0040 0.1722 0.0067 2.4444
Relative Location X 0.6040 0.2975 -0.0711 1.2754 -0.0094 2.3235
Relative Location Y 0.2372 0.4643 -0.8736 1.4087 0.0149 2.6997
Max. 2nd order Drv Corr. 0.6354 0.0951 0.4040 0.9320 0.1608 2.9336
Number of Calcifications 2.0645 6.7471 0.0000 50.0000 4.4524 25.7707

Table 2.2: Statistics of benign and malignant cases after transformation.
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Figure 2.7: Case based performance SVM classifier with radial kernel function after dimension-
ality reduction of all features (81 per view) with PCA, averaged over 5 runs.

and SVM classifier after applying dimensionality reduction on our dataset. Figure 2.5
shows the classification performance of the naive Bayesian classifier, where horizon-
tally the number of principal components is plotted and vertically the area under the
ROC curve. The principal component vectors were calculated using the training set
only. These principal component vectors are then used to transform both the training
and test set. The best result was obtained with 14 principal components. The perfor-
mance remained almost constant when adding more dimensions. With SVMs the best
result was obtained with only 6 principal components and decreased gradually if more
components were added which is shown in Figure 2.6. The difference in classification
performance between BNs and SVMs was statistically insignificant (p=0.11) when we
used the optimal number of principal components for the classifier. In an additional
experiment we trained a SVM on all the available features (81 per view). This led to
the classification results shown in Figure 2.7. The maximum performance was reached
in 10 components (Az = 0.811) but this was not significantly higher than the maximum
performance obtained in the experiment with the subset of the 12 most important fea-
tures (Az = 0.793).
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2.4 Conclusions

We performed a study to compare two state-of-the-art classification techniques char-
acterizing masses as either benign or malignant. We evaluated the effectiveness of di-
mension reduction and normal distribution transformation in improving the classifica-
tion accuracy. The Manly transformation method significantly improved classification
accuracy of the naive Bayesian classifier. We believe that this is due the fact that, by
transforming the distribution of the non-normal data to a distribution closer to normal,
the assumptions of the naive Bayesian classifier are violated less. We also found that
this transformation does not work for all data, i.e., transforming features that were
already approximately normal within their class. We believe that by selecting one
gamma for Manly’s transformation, without looking to the class label, can negatively
effect the binormal distribution (i.e., two normal distributions: one for benign and an-
other for malignant cases) of the Stellateness Mean features. For the SVM classifier, the
data does not need to be normally distributed which explains why this transformation
did not have effect on the performance of the SVM classifier. After transformation,
the difference in performance of the SVM classifier and the naive Bayesian classifier
was not statistically significant. Bayesian networks allow incorporating background
knowledge, which may be exploited to improve their performance in the future. De-
spite the major drawback of principal component analysis, i.e., it can eliminate a di-
mension that is good for discriminating positive cases from negative cases, this unsu-
pervised dimension reduction algorithm improved the classification accuracy of both
classifiers. The performance of the two classifiers after applying PCA was very similar,
with no statistical differences in the area under the ROC curve.
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Improved mammographic CAD performance using multi-view information

Abstract

Mammographic reading by radiologists requires the comparison of at least two breast
projections (views) for the detection and the diagnosis of breast abnormalities. De-
spite their reported potential to support radiologists, most mammographic computer-
aided detection (CAD) systems have a major limitation: as opposed to the radiologist’s
practice, computerized systems analyze each view independently. To tackle this prob-
lem, in this paper, we propose a Bayesian network framework for multi-view mammo-
graphic analysis, with main focus on breast cancer detection at a patient level. We use
causal independence models and context modelling over the whole breast represented
as links between the regions detected by a single-view CAD system in the two breast
projections. The proposed approach is implemented and tested with screening mam-
mograms for 1063 cases of whom 385 had breast cancer. The single-view CAD system
is used as a benchmark method for comparison. The results show that our multi-view
modelling leads to significantly better performance in discriminating between normal
and cancerous patients. We also demonstrate the potential of our multi-view system
for selecting the most suspicious cases.
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3.1 Introduction

3.1 Introduction

Breast cancer is the most common form of cancer among women world-wide and
its early detection does improve the chances of successful treatment and recovery158.
Therefore, many countries have introduced breast cancer screening programs with pe-
riodic mammographic examinations in asymptomatic women. In contrast to the clini-
cal situation, in the screening setting the detected lesions are usually small and due to
the breast compression they are sometimes difficult to observe in both views. In other
words, while the correct detection and location of a cancerous region is important,
in breast cancer screening the crucial decision based on the mammographic exam is
whether or not it is likely that a woman has breast cancer, and if the answer is positive,
is referred to the clinic for further examination.

A screening mammographic examination usually consists of four images, corre-
sponding to each breast scanned in two views–mediolateral oblique (MLO) view and
craniocaudal (CC) view (see Figure 3.1). The MLO projection is taken under 45◦ angle
and shows part of the pectoral muscle. The CC projection is a top-down view of the
breast. In reading mammograms, radiologists judge whether or not a lesion is present
by comparing both views and breasts. The general rule is that a lesion is to be observed
in both views.

  

a) b)

Figure 3.1: a) MLO and b) CC views of a right and left breast of a patient. The circle depicts a
(cancerous) lesion in the left breast

To guarantee high detection rates, independent double reading by two radiolo-
gists is a widely used standard in breast cancer screening. Due to its complexity and
the variability in human performance, however, mammographic reading and decision
making appear to be difficult tasks. Radiologists are usually confronted with two main
problems in the mammographic analysis: (i) perceptual oversight where an abnormal-
ity is present, but is missed and (ii) interpretation failure where an abnormality is seen

33



Improved mammographic CAD performance using multi-view information

but its significance is misinterpreted. There are two main types of abnormalities: mi-
crocalcifications and masses. In this work, we deal with the second, more frequently
occurring type. There is strong evidence that for masses misinterpretation is a more
common cause of missing cancers in screening than perceptual oversight.

In an attempt to support radiologists in overcoming these problems, a large num-
ber of mammographic computer-aided detection (CAD) systems have been developed
and tested in the past twenty years. Essentially, the working principle of current CAD
systems comprises a multi-stage process based on identification of regions of interest
using image processing and pattern recognition techniques, extraction of a feature vec-
tor for each of these regions and classification of the regions as cancerous (abnormal)
based on supervised learning techniques such as neural networks.

Despite the reported evidence about their potential benefit, most CAD methods
suffer from certain limitations due to the uncertainty inherent in the domain. For ex-
ample, misclassification can arise between a region of interest and its extracted feature
vector or lack of separability between regions of interest that have similar features. One
reason for these problems is that, opposite to the radiologist’s practice, most comput-
erized systems are based on a single-view principle where each view and the regions
within a view are analyzed independently. Hence, the multi-view and multi-region de-
pendencies in the breast are ignored and the breast cancer detection can be obscured.
As a result, such systems perform worse than the human experts, which limits their
practical application and usability.

To tackle these problems statistical modelling of the domain can be applied to the
automatic detection process. In this paper, we propose a Bayesian network framework
for exploiting multi-view dependencies for the analysis of screening mammograms.
Given the goal of screening programs, we focus primarily on the breast cancer detec-
tion at a patient level, rather than on the location of the cancer in the mammogram. The
main idea of our methodology lies in combining the information available as detected
regions from a single-view CAD system in MLO and CC to obtain a single likelihood
measure for a patient being cancerous. In comparison to previous methods, we can
outline a number of advantages of our probabilistic framework:

• Handling noise and missing information: specifying and learning the network
parameters in a probabilistic manner allows uncertain information to be incorpo-
rated based on the values of all the non-missing variables.

• Incorporating domain knowledge: unlike black-box approaches such as neu-
ral networks, our framework captures explicitly view dependencies through the
Bayesian network structure and the definition of the conditional probability ta-
bles.
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• Using context information over the whole breast: breast classification is done on
the basis of simultaneous consideration of the regions automatically detected in
each breast view and their links to the other view of the same breast.

We adopt the following terminology from the breast cancer domain throughout
this paper. By lesion we refer to a physical cancerous object detected in a patient (the
circle in Figure 3.1). We call a contoured area on a mammogram a region (for example,
marked manually by a human or detected automatically by a CAD system). A region
can be true positive (TP), i.e., correct detection of the lesion (cancer) or false positive
(FP). A region detected by a CAD system is described by a number of continuous (real-
valued) features (e.g., size, location, contrast). By link we denote matching (established
correspondence) between two regions in MLO and CC views, respectively. The term
case refers to a patient who has undergone a mammographic exam. The most recent
case for a patient is called current whereas the previous case(s) are prior(s).

The remainder of the paper is organized as follows. In the next section we briefly
review previous research in multi-view breast cancer detection. In Section 3.3 we de-
scribe the general problem of multi-view detection, introduce basic definitions related
to Bayesian networks and then we present a general Bayesian network framework for
multi-view detection. The proposed approach is evaluated on an application of breast
cancer detection using actual screening data. The evaluation procedure and the results
are presented in Section 3.4. Conclusions and directions for extension of our model are
given in Section 3.5.

3.2 Previous research

A number of previous works deal with the problem of automatic multi-view breast
cancer detection on mammograms. Good et al.159 proposed a probabilistic method
for true matching of lesions detected in both views, based on Bayesian network and
multi-view features. The results from experiments demonstrate that their method can
significantly distinguish between true and false positive links of regions. Van Enge-
land et al.160 describe another linking method based on Linear Discriminant Analysis
(LDA) classifier and a set of view-link features to compute a correspondence score for
every possible region combination. For every region in the original view the region
in the other view with the highest correspondence score is selected as the correspond-
ing candidate region. The proposed approach demonstrates an ability to discriminate
between true and false links. Van Engeland and Karssemeijer51 extended this match-
ing approach by building a cascaded multiple-classifier system for reclassifying the
region level of suspiciousness of an initially detected region based on the linked candi-
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date region in the other view. Experiments have shown that the lesion-based detection
performance of the two-view detection system is significantly better than that of the
single-view detection method.

Paquerault et al.53 also consider established correspondence between suspected re-
gions in both views to improve lesion detection. LDA is used to classify each object
pair as true or false. By combining the resulting correspondence score with its one-
view detection score the lesion detection improves and the number of false positives
reduces. In this study, the authors also report improvement in the case-based perfor-
mance (fraction of TP cases where a case is TP, if cancer is found in MLO or CC view)
based on multi-view information, especially for cases where the lesion has been de-
tected in both views.

In two recent studies, Sun et al.161 and Qian et al.162 also demonstrate the superior
performance of a multi-view CAD system over its single-view counterpart. The ap-
proach consists of multiple steps starting with advanced single-view image processing
for region segmentation, followed by multi-view feature extraction and final classifica-
tion of the detected regions of interest based on neural networks with Kalman filtering.
Using iterative processing between the single- and multi-view stages, the authors show
a reduction at the false positive rates of masses per image as well as an increase at the
case-based detection rate.

However, in all these works the main focus is on improving the localized detection
of breast cancer, mostly for prompting purposes, rather than the detection at a case
level. Therefore, the likelihood for cancer in a case is often determined by the region
with the maximum likelihood. In contrast, in the current study we aim at building a
CAD system that discriminates well between normal and cancerous cases–the ultimate
goal of breast cancer screening programs–by considering all available information (in
terms of regions) in a case. In the next section, we describe such a system based on a
probabilistic methodology and we demonstrate its practical potential on a case study.

3.3 Bayesian multi-view detection

3.3.1 Problem Description

In multi-view medical imaging, two-dimensional (2D) projections of the organ(s) of in-
terest (e.g. breast) are acquired from two or more viewing angles. The objective of the
multi-view detection then is to determine whether or not the object has certain charac-
teristics (e.g., being cancerous) by establishing correspondences between the 2D image
characteristics of regions (subparts) in multiple object views (projections). Figure 3.2
depicts the general multi-view detection scheme.
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 View–A  View–B 

A1 

B2 

B1 

A2 

L 11 

L 12 

L 22 

L 21 

Figure 3.2: Schematic representation of multi-view analysis of a physical object with automati-
cally detected regions

We have a physical object referring to an organ (displayed as a gray cloud), which is
projected in two views, View-A and View-B. Suppose we have a cancerous physical sub-
part of the object represented by the ovals in both projections; hence, the whole object is
cancerous. In both views an automatic single-view system detects potential cancerous
regions described by a number of real-valued extracted features. In the figure regions
A1 and B1 are correct detection of the cancerous physical subpart, i.e., these are TP
regions whereas A2 and B2 are FP regions. Since we deal with projections of the same
physical object we introduce links (Lij) between the detected regions in both views, Ai
and Bj . Every link has a class (label) Lij = `ij defined as follows

`ij =

true if Ai or Bj are TP,

false otherwise.
(3.1)

This definition allows us to maintain information about the presence of cancer even
if there is no cancer detection in one of the views. A binary class C with values of true
(presence of cancer) and false for region, view or the whole object (organ) is assumed
to be provided by pathology or a human expert.

In any case, multiple views corresponding to the same cancerous part contain cor-
related characteristics whereas views corresponding to normal parts tend to be less
correlated. For example, in mammography an artifactual density might appear in one
view due to the superposition of normal tissue whereas it disappears in the other view.
To account for the interaction between the breast projections, in this paper we develop
a Bayesian network framework for mammographic analysis. The power of Bayesian
networks lies in their ability to (i) explicitly and efficiently encode causal dependences
in a domain and (ii) model and reason about uncertainty in a probabilistic fashion.
This makes them a suitable modelling tool for the multi-view detection problem. The
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next section gives some general background about Bayesian networks.

3.3.2 Bayesian Networks

Consider a finite set U of random variables, where each variable U in U takes on values
from a finite domain dom(U). Let P be a joint probability distribution of U and let
X,Y,Z be disjoint subsets of U. We say that X and Y are conditionally independent
given Z, denoted by X ⊥⊥ PY | Z, if for all x ∈ dom(X), y ∈ dom(Y), z ∈ dom(Z), the
following holds:

P (x | y, z) = P (x | z), whenever P (y, z) > 0.

In short, we have P (X | Y,Z) = P (X | Z).
A Bayesian network is defined as a pair BN = (G,P ) where G is an acyclic directed

graph (ADG) G = (V,E) with a set of nodes V corresponding to the random variables
in U and a set of edges (arcs) E ⊆ (V ×V ) corresponding to direct causal relationships
between the variables. We say that G is an I–map of P if any independence represented
in G, denoted by A ⊥⊥ GB | C with A,B,C ⊆ V mutually disjoint sets of nodes, is
satisfied by P , i.e.,

A ⊥⊥ GB | C =⇒ XA ⊥⊥ PXB | XC ,

where A, B and C are sets of nodes of the ADG G and XA, XB and XC are the corre-
sponding sets of random variables. The acyclic directed graphical part of a Bayesian
network G is by definition an I–map of the associated joint probability distribution P .
A Bayesian network BN offers a compact representation of the joint probability distri-
bution P in terms of local conditional probability distributions (CPDs), or, in the discrete
case, in terms of conditional probability tables (CPTs), associated to the individual nodes.
The conditional probability distributions are usually more compact than in the general
case, as they take into account the conditional independence information represented
by the ADG. For a more detailed recent description of Bayesian networks, the reader
is referred to163.

Causal Independence Models

It is known that the number of probabilities in a CPT for a certain variable grows ex-
ponentially in the number of parents in the ADG. Therefore it is often infeasible to
define the complete CPT for variables with many parents. One way to specify interac-
tions among statistical variables in a compact fashion is offered by the notion of causal
independence164. Causal independence arises in cases where multiple causes (parent
nodes) lead to a common effect (child node). Here we present the formal definition
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C 1 C 2 . . . C n

I 1 I 2 . . . I n

E f

Figure 3.3: Causal-independence model

of the notion of causal independence as given in the article from Lucas 2005165. The
general structure of a causal-independence model is shown in Figure 3.3; it expresses
the idea that causes C1, . . . , Cn influence a given common effect E through intermedi-
ate variables I1, . . . , In; the intermediate variable Ik is considered to be a contribution
of the cause variable Ck to the common effect E. The interaction function f represents
in which way the intermediate effects Ik, and indirectly also the causes Ck, interact.
This function f is defined in such way that when a relationship between the Ik’s and
E = true is satisfied, then it holds that f(I1, . . . , In) = true; otherwise, it holds that
f(I1, . . . , In) = false. Note that each variable Ik is only dependent on its associated
cause Ck and the effect variable E. Furthermore, the graph structure expresses that the
effect variable E is conditionally independent of each cause Ck given the associated
intermediate variable Ik.

An important subclass of causal-independence models is obtained if the deter-
ministic function f is defined in terms of separate binary functions gk; it is then called a
decomposable causal-independence model164. Usually, all functions gk(Ik, Ik+1) are iden-
tical for each k. Typical examples of decomposable causal-independence models are
the noisy-OR166 models, where the function g represents a logical OR. These models
express that the presence of any of the causes Ck with absolute certainty will cause the
effect E = true. A simple example of a noisy-OR model is given in the Appendix.

In our modelling framework, presented in the next section, we apply such a decom-
posable causal-independence model with the logical OR. Our choice is motivated by
two major features of the representation of the noisy-OR models. First, from the defini-
tion of the noisy-OR model it follows that the higher the number of causes influencing
the effect the higher the probability that the effect occurs. This rule is definitely appli-
cable in the domain of breast cancer detection where the more evidence (e.g., in terms
of detected regions) is added the higher the probability for cancer. Another important
feature from a computational point of view is that the representation of the noisy-OR
models has a linear complexity with respect to the number of causes.
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3.3.3 Model Description

Our modelling scheme is based on two Bayesian networks with a hand-constructed
(fixed) structure to explicitly represent the multi-view dependencies in the detection
problem. Consider again the detection scheme presented in Figure 3.2. The regions
Ai and Bj are generally conditionally independent given the case. However, they be-
come dependent once we have evidence that they are the projections of the same le-
sion in two views. In the context of Bayesian networks, this region dependence can
be modelled by (i) three nodes: two for the regions and one for the link and (ii) the
so-called v-structure where directed arcs are drawn from the region nodes to the link
node: Ai −→ Lij ←− Bj . Such a representation of the dependence between a relation
(link) and its parts (regions) has also been advocated by other researchers in the field of
vision perception167. Note that swapping the arc direction from the link to the regions
would imply that the regions are conditionally independent given the existence of a
link, which contradicts our intuition.

Furthermore, by definition the link variable is discrete and the regions are rep-
resented by a vector of real-valued features (x1, x2, . . . , xn) extracted from an auto-
matic detection system. Therefore we apply logistic regression to compute P (Lij =

`ij|Ai, Bj):

P (Lij = `ij|Ai, Bj) =
exp

(
β
`ij
0 + β

`ij
1 x1 + · · ·+ β

`ij
2nx2n

)
1 + exp

(
β
`ij
0 + β

`ij
1 x1 + · · ·+ β

`ij
2nx2n

) ,
where β’s are the model parameters to be estimated and the index 2n is the total num-
ber of region features from both views. We note that other estimators such as mul-
tilayer neural networks can be also used to define P (Lij = `ij|Ai, Bj) but we choose
logistic regression as it ensures in a straightforward way that the outputs P (Lij =

`ij|Ai, Bj) are probabilities.
In our multi-view detection problem the object (organ) contains a number of links

where every region in one view is connected to all the regions in the other view. Hence,
it is intuitive and straightforward to construct a causal structure where all the links are
modelled in parallel (see the first top layer in the network depicted in Figure 3.4(a)).
Thus, using the context modelling capabilities of Bayesian networks we consider at
once all the information available about the object.

Next we estimate the probabilities P (CAi = true|{Lij = `ij}NBj=1) and P (CBj =

true|{Lij = `ij}NAi=1) where CAi (CBj) is the class of region Ai(Bj), NA(NB) is the total
number of regions in View-A (View-B) and {Lij = `ij}NB(NA)

j(i=1) denotes the set of all links
containing Ai(Bj). Given our link class definition in (3.1), we can easily model these
conditional dependencies through a causal model using the logical OR. We refer to this
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Figure 3.4: Bayesian network framework for representing the dependencies between multiple
views of an object

Bayesian network as RegNet (see Figure 3.4(a)).

Recall that our main goal is to optimize classification globally in terms of the whole
object (organ). Therefore, we construct a second Bayesian network to combine the
computed region probabilities from RegNet to obtain the probability of a view being
true. We use a causal-independence model with the logical OR where the cause nodes
Ci are the region probabilities, the intermediate nodes Ii are the region classes and
the only leaf node is the view probability. This Bayesian network is depicted in Fig-
ure 3.4(b) and we refer to it as ViewNet. The whole multi-view model based on RegNet

and ViewNet is called MV-CAD.

Finally, we combine the view probabilities obtained from ViewNet into a single
probabilistic measure for the object (organ) as a whole by using different schemes.
The first scheme MV-CAD-Avg is straightforward–simply averaging both view probabil-
ities. In another more advanced scheme MV-CAD-LR, we take into account the class of
the object (false or true) by using a logistic regression model with the estimated view
probabilities as input variables.

3.4 Application to breast cancer detection

As mentioned in the introduction, multi-view analysis plays a crucial role in the breast
cancer detection on mammograms. Here, we describe the application of the proposed
Bayesian network framework in this domain.
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3.4.1 Single-View CAD System

The inputs for our multi-view detection scheme are the regions detected by a single-
view CAD system160 that consists of the following main steps (see Figure 3.5):

1. Segmentation of the mammogram into background area, breast, and for MLO,
the pectoral muscle.

2. Initial detection of pixel-based locations of interest. For each location in the breast
area a number of features are computed that are related to tumor characteristics
such as presence of spicules and focal mass. Based on these features, a neural
network (NN) classifier is then employed to compute likelihood for cancer. The
locations with a likelihood above certain threshold are selected as locations of
interest.

3. Region extraction with dynamic programming using the detected locations as
seed points. For each region a number of continuous features are computed based
on breast and local area information.

4. Region classification as “normal” and “abnormal” based on the region features.
A likelihood for cancer is computed based on supervised learning with a NN and
converted into normality score (NormSc): the average number of normal regions
in a view (image) with the same or higher cancer likelihood. Hence, the lower
the normality score the higher the likelihood for cancer.
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Figure 3.5: Stages in the single-view CAD system

3.4.2 Data Description

The data set we use in this study contain 1063 screening exams (cases) from which
385 were cancerous. The data is a mixture of 795 current cases and 268 prior cases; 33
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were cancerous priors with the cancer visible in retrospect. We considered the exams of
one patient as independent cases. All exams contained both MLO and CC views. The
total number of breasts were 2126 from which 388 had cancer. All cancerous breasts
had one visible lesion representing a mass, architectural distortion, or asymmetry in at
least one view, which was verified by pathology reports to be malignant (cancerous).
Lesion contours were marked by, or under supervision of, an experienced screening
radiologist.

For each image (mammogram) we have a number of regions detected by the single-
view CAD system. Every region is described by 11 real-valued features automatically
computed by the system. These features include the neural network’s output from
the single-view CAD and lesion characteristics such as spiculation, focal mass, size,
contrast, linear texture and location coordinates. Since the only certain information we
have about the findings is the one related to the cancer, for each region, based on the
ground-truth data, we have a class value of true (“cancerous”) if the detected region
hits a cancerous finding and false (“normal”) otherwise, which may also include hits
of benign findings. Every region from MLO view was linked with every region in CC
view. For every link we added the binary class values of false (“normal”) and true

(“cancerous”) following the definition in (3.1). We assign analogous binary classes for
view, breast and case based on the ground-truth information.

We construct the data such that every row corresponds to one breast observation
represented by all feature vectors for the regions in MLO, followed by the regions in
CC. The sequence of regions per view was determined by the level of suspiciousness,
starting with the most suspicious one. In this study we conduct experiments with two
datasets where we select 5 and 3 regions per view with the lowest NormSc. The two
datasets are described in Table 3.1. The selection of 5 regions per view leads to data
where in only 5 out of 385 cancerous cases there is no TP detected region and thus
no true link is available in these cases for training the networks. On the other hand,
we have a large number of MLO and CC regions, which are mostly FP. Therefore for
the second data set we choose 3 regions per view. However, this leads not only to
considerably less FP regions in MLO and CC but also to a higher number of missed TP
regions–in total 13 out of 385 cases.

3.4.3 Training and Evaluation

To train and evaluate the proposed multi-view CAD system, we used two-fold cross
validation: the dataset is randomly split into two subsets with approximately equal
number of observations and proportion of cancerous cases. The data for a whole case
belonged to only one of the folds. Each fold is used as a training set and as a test set.
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Table 3.1: Description of the two datasets used in the current study

Parameter
Dataset-1 Dataset-2

(Data5reg) (Data3reg)

Number of regions per view 5 3
Total number of regions (MLO / CC) 10478 / 10343 6358 / 6328
Number of cancerous cases

5 13without true links

At every level (region, view, breast and case) the same data folds were used. Although
we use the results from the single-view CAD system, we want to emphasize that the
random split for the multi-view CAD system is done independently–the single-view
CAD system was trained and tested with ten-fold cross validation on a much larger
dataset including regions from cases without CC views.

Bayesian network training. Both RegNet and ViewNet have been built, trained and
tested by using the Bayesian Network Toolbox in Matlab156. The learning has been
done using the EM algorithm, which is typically used to approximate a probability
function given incomplete samples (in our networks the OR-nodes are not observed168.

Breast data training. As we discussed in the description of our model, we apply
two combining schemes–averaging and logistic regression–to compute the probability
for a breast being cancerous given the respective view probabilities. For the logistic
regression, the input contains view information represented by the probabilities for
MLO and CC obtained from ViewNet and the minimum NormScs for each view, which
are also indicators for view suspiciousness.

Case classification. We compute the likelihood of a case being cancerous based on
the computed right and left breast probabilities. The first simplest approach is to take
the maximum out of both probabilities. Furthermore, for the MV-CAD-LR model, which
accounts for the breast classes, we presume that further improvement can be achieved
by using the case class. Therefore we perform logistic regression using two inputs: the
maximum out of both breast probabilities and the single-view measure for suspicious-
ness. Thus from the multi-view CAD system, we obtain in total three measures for a
case being cancerous: MV-CAD-Avg-max, MV-CAD-LR-max and MV-CAD-LR-LR.
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The performance of our multi-view model is compared with that of the single-view
CAD system (SV-CAD). For the latter, the likelihood for a view, breast and case being
cancerous is computed by taking the likelihood (NormSc) of the most suspicious re-
gion. The comparison analysis is done using the Receiver Operating Characteristic
(ROC) curve169 and the Area Under the Curve (AUC), a standard performance mea-
sure in the radiologists’ practice. The significance of the differences obtained in the
AUC measures is tested using the ROCKIT software for fully paired data: for each
patient we have a pair of test results corresponding to MV-CAD and SV-CAD152.

3.4.4 Experiments and Results

Individual view, breast and case classification.

Based on the results from ViewNet, Figures 3.6(a) and 3.6(b) present the classification
outcome with the respective AUC measure per MLO and CC view for Data5reg and
Data3reg. First we observe that for both MV-CAD and SV-CAD the performance for CC
view in terms of AUC is better than that for MLO view. This can be explained by the
fact that the classification of CC views is generally easier than that of MLO views due
to the breast positioning. At the same time our multi-view system improves consider-
ably upon the single-view CAD system in better distinguishing cancerous from normal
MLO views whereas for CC views this improvement is less. Another interesting result
is that the largest improvement, especially for MLO view, is observed in the lower scale
of the false positive rate (< 0.5).

To check the significance of the difference between the AUC measures we test the
hypothesis that the AUC measures are equal against the one-sided alternative hypoth-
esis that the multi-view system yields higher AUC for MLO and CC views. Table 3.2
summarizes the statistical test results by providing the corresponding p-values and
95% confidence intervals of the difference between the AUC measures. The results
clearly indicate an overall improvement in the discrimination between cancerous and
normal views for both MLO and CC projections. Such an improvement is expected
as the classification of each view in our multi-view system takes into account region
information not only from the view itself but also from the regions in the other view.

While the view results are very promising from a radiologists’ point of view it is
more important to look at the breast and case level performance. Tables 3.3 and 3.4
presents the respective AUC (standard error) obtained from MV-CAD and SV-CAD sys-
tem as well as the one-sided p-values and 95% confidence intervals obtained from the
tests on the differences between our multi-view model and the single-view system.
Although the simple averaging method MV-CAD-Avg (MV-CAD-Avg-max) tends to show
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Figure 3.6: ROC analysis per MLO and CC view

better distinction between normal and cancerous breasts (cases) with respect to the
SV-CAD, the difference in the AUC measures is statistically insignificant. However, tak-
ing into account the breast classes and performing new training as done in the more
advanced MV-CAD-LR leads to a significant improvement in the classification outcome.
The best performance for both datasets at a case level is achieved for MV-CAD-LR-LR,
confirming our expectation that further improvement can be achieved by training us-
ing the case class. Furthermore, we note that for both datasets, MV-CAD-LR-LR yields
the same AUCs but with slightly different p-values. To explain this difference we plot
the ROC curves; see Figure 3.7. We see that for Data5reg improvement in the breast
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Table 3.2: AUC (std.error) obtained from the single- and multi-view system per MLO and CC
with the respective one-sided p-values and 95% confidence intervals for the difference

View Method Data5reg p-value Data3reg p-value

MLO
SV-CAD

0.805
–

0.805
–(0.013) (0.013)

MV-CAD
0.851 0.000 0.854 0.000

(0.011) (0.028,0.063) (0.011) (0.031,0.067)

CC
SV-CAD

0.830
–

0.830
–(0.012) (0.012)

MV-CAD
0.853 0.004 0.856 0.001

(0.011) (0.006,0.039) (0.011) (0.009,0.044)

cancer detection is observed over the whole range of false positive rates whereas for
Data3reg it is achieved for false positive rates < 0.6.

Table 3.3: AUC (std.error) obtained from the single- and multi-view system at a breast level with
the respective one-sided p-values and 95% confidence intervals for the difference

Method
BREAST

Data5reg p-value Data3reg p-value

SV-CAD 0.849 – 0.849 –
(0.012) (0.012)

MV-CAD-Avg 0.862 0.047 0.860 0.094
(0.011) (-0.002,0.029) (0.011) (-0.005,0.026)

MV-CAD-LR 0.868 0.010 0.865 0.024
(0.011) (0.003,0.034) (0.011) (0.000,0.031)

Use of CAD for prescreening of cases.

The results so far presented demonstrate the superior performance of the multi-view
system in comparison to its single-view counterpart in terms of individual view, breast
and case classification. Here we demonstrate another potential application of the multi-
view CAD system to support mammographic decision-making, namely automated
prescreening of cases. The objective is to group cases into two basic categories: “suspi-
cious” and “normal” in order to handle these by a different reading protocol.
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Table 3.4: AUC (std.error) obtained from the single- and multi-view system at a case level with
the respective one-sided p-values and 95% confidence intervals for the difference

Method
CASE

Data5reg p-value Data3reg p-value

SV-CAD 0.807 – 0.807 –
(0.014) (0.014)

MV-CAD-Avg-max 0.825 0.040 0.819 0.104
(0.014) (-0.002,0.040) (0.014) (-0.008,0.035)

MV-CAD-LR-max 0.830 0.014 0.828 0.037
(0.013) (0.003,0.045) (0.014) (-0.002,0.041)

MV-CAD-LR-LR 0.831 0.007 0.831 0.008
(0.013) (0.005,0.043) (0.013) (0.004,0.043)
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Figure 3.7: ROC analysis per case

One can argue that cases selected as “suspicious” would benefit most from receiv-
ing more attention from radiologists. If resources in a screening program only allow
for single-reading programs, for example, one might considered a modest extension of
the program by double reading only the most suspicious cases. On the other hand, if
double reading is practiced and resources are limited, one might consider to use single
reading for a subset of cases selected by a CAD system as highly normal, leading to a
considerable reduction in the workload. Alternatively, if both radiologists in a double
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reading setting do not find an abnormality in a case that is judged highly suspicious by
a CAD system, one could present such a case to a third reader performing arbitration,
similar to the procedure that is often followed if both readers disagree.

The problem of case prescreening has already been addressed in the literature in-
troducing the concept of using specially trained, non-physician personnel for mammo-
graphic prescreening. With the increasing demand for mammography, required train-
ing times and shortage of manpower, however, it may be more beneficial to use CAD
systems as a prescreening tool. To our knowledge only a few studies discussed so far
the application of CAD systems for prescreening of cases170,171. The current work con-
tributes to the fund of knowledge in this area by considering the use of the multi-view
and the single-view CAD system for the selection of most and least suspicious cases.

The aim of prescreening is optimizing the detection rate while reducing the work-
load. Because in the breast cancer screening programs the number of normal cases is
far larger than that of cancerous cases, the workload is determined by the number of
normals to be read. Therefore, for the prescreening task we consider the percentage of
detected cancers as a function of a percentage of normal cases with highest likelihood
for cancer. Figure 3.8 depicts the results for MV-CAD-LR-LR and SV-CAD.
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Figure 3.8: Percentages of cancerous cases within subsets of most suspicious normal cases for
the single- and multi-view systems

49



Improved mammographic CAD performance using multi-view information

The results demonstrate that using multi-view information leads to overall increase
in the number of detected cancers when a subset of normal cases with highest like-
lihood for cancer is selected. For example, if 10% of the normals are selected then
MV-CAD-LR-LR on Data5reg and Data3reg detects 62% and 62% of the cancers against
57% of SV-CAD. This trend is especially observed for the lower range (< 20%) of selected
normal cases.

When considering the other prescreening task–selection of the least suspicious cases–
we would like to minimize the number of cancers missed when a subset of highly
normal cases is chosen. In this respect, looking at the upper range of the percentage
of selected normal cases in Figure 3.8 (these are the least suspicious cases), we see that
the multi-view leads only to a slight reduction in the number of misclassified cancerous
cases in comparison to the single-view CAD system. We note that the result that both
CAD systems do not detect all the cancers at smaller subsets of normal cases could be
explained by the fact that 9% of the cancerous cases included in our study were priors,
i.e. cancers that were not detected by the radiologists at the screening stage.

3.5 Conclusions and future research

In this paper we proposed a Bayesian network framework for multi-view mammo-
graphic analysis. We showed that the incorporation of expert knowledge in a proba-
bilistic manner led to a higher detection rate of breast cancer compared to a single-view
CAD system. This improvement was achieved at a view, breast and case level and it
is due to a number of factors. First, we built upon a single-view CAD system that
demonstrates a good performance at local breast cancer detection. Second, following
the radiologists’ practice, we considered multi-view dependencies between MLO and
CC views to obtain a single measure for the view, breast and case being cancerous.
This was done by: (i) defining links between the regions detected by the single-view
CAD system in MLO and CC views (ii) building a probabilistic causal model where
all detected regions with their feature vectors and the established region links are con-
sidered simultaneously, and (iii) using the logical OR to compute the region and view
probability for cancer. Our multi-view scheme also benefits from its Bayesian nature
allowing to handle noisy or incomplete information such as the lack of detected or
visible lesions in one of the views.

Except the improvement in the individual case-based performance, in the current
study we also demonstrated the potential of the multi-view CAD system for prescreen-
ing purposes. In contrast to the traditional prompting CAD systems, in this work we
considered the problem of breast cancer detection in screening mammography at a
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case level. From this perspective, the proposed CAD system could be used to select
the most suspicious cases or to group them for batch reading, as a set of difficult cases.
In this way, the selected cases would get more attention from radiologists, for example,
by providing additional reading. This could help increase the breast cancer detection
rate.

Furthermore, our experiments show that the proposed Bayesian network framework
is relatively stable with respect to the number of selected regions per mammogram de-
tected by the single-view CAD. In the current study, we used two versions of the same
set of patient cases: one with 5 regions and the other with 3 regions per mammogram.
The results indicate that the performance of the models built on both datasets is com-
parable on individual view, breast and case classification as well as on the selection of
most suspicious cases.

Although we demonstrate that the proposed framework has the potential to assist
screening radiologists to improve the evaluation of breast cancer cases, we consider a
number of directions for extension. First, the current model is based on features that
are independently computed per region. However, it is natural to include multi-view
features such as the distance to the nipple or correlation features. In such a way, we can
explicitly represent multi-view dependencies not only in a qualitative way (through
the Bayesian network’s structure) but also in a quantitative way (through the input
information). This can help improve the system’s detection performance. Another
possible extension is based on the model structure. Following our Bayesian network
framework with using logistic regression and OR-function at a link and view level, we
can also apply similar combining schemes at a breast and case level. Thus we can allow
for better handling of missing or noisy information in the estimation of the breast/case
likelihood for cancer. A third interesting extension of the proposed CAD system is the
incorporation of temporal information. In the screening practice, the decision whether
a patient has cancer depends not only on the breast multi-view comparison but also
on the comparison of current mammograms with previous mammograms of the same
patient. The appearance of a new or developing lesion is a strong indication for sus-
piciousness. Therefore, by integrating multi-view with temporal information in our
Bayesian network framework, we can better represent and more accurately model the
decision-making process in screening mammography.

Finally, we note that the straightforward nature of the proposed Bayesian network
framework allows its relatively easy application to any domain where the goal is com-
puterized multi-view (object) detection.
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Appendix

Figure 3.9 depicts an example of a causal-independence model with two cause vari-
ables Flu (Fl) and Pneumonia (Pn) and one effect variable Fever (Fe). Probability distri-
butions P (I1|Fl) and P (I2|Pn) represent a noise. The interaction function f(I1, I2) for
the effect Fever is the logical OR.
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Figure 3.9: Example of a noisy-OR model

Then the probability of having fever given the states of Fl and Pn is computed as
follows:

P (Fe = true|Fl,Pn) =
∑

f(I1,I2)=true

P (Fe = true|I1, I2)P (I1|Fl)P (I2|Pn)

= P (I1 = true|Fl)P (I2 = true|Pn) +

P (I1 = true|Fl)P (I2 = false|Pn) +

P (I1 = false|Fl)P (I2 = true|Pn).

For example, given the evidence of Fl = true and Pn = true then we obtain

P (Fe = true|Fl,Pn) = 0.9 · 0.75 + 0.9 · 0.25 + 0.1 · 0.75 = 0.975,

indicating the combined influence of both causes on the probability of having fever.
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Matching mammographic regions in mediolateral oblique and cranio caudal views

Abstract

Most of the current CAD systems detect suspicious mass regions independently in sin-
gle views. In this paper we present a method to match corresponding regions in medi-
olateral oblique (MLO) and craniocaudal (CC) mammographic views of the breast. For
every possible combination of mass regions in the MLO view and CC view, a number
of features are computed, such as the difference in distance of a region to the nipple, a
texture similarity measure, the gray scale correlation and the likelihood of malignancy
of both regions computed by single-view analysis. In previous research, Linear Dis-
criminant Analysis was used to discriminate between correct and incorrect links. In
this paper we investigate if the performance can be improved by employing a statisti-
cal method in which four classes are distinguished. These four classes are defined by
the combinations of view (MLO/CC) and pathology (TP/FP) labels. We use distance-
weighted k-Nearest Neighbor density estimation to estimate the likelihood of a region
combination. Next, a correspondence score is calculated as the likelihood that the re-
gion combination is a TP-TP link. The method was tested on 412 cases with a ma-
lignant lesion visible in at least one of the views. In 82.4% of the cases a correct link
could be established between the TP detections in both views. In future work, we will
use the framework presented here to develop a context dependent region matching
scheme, which takes the number and likelihood of possible alternatives into account.
It is expected that more accurate determination of matching probabilities will lead to
improved CAD performance.
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4.1 Introduction

One of the major challenges in computer-aided detection (CAD) of mammographic
masses is the reduction of false positives while sensitivity is maintained. Although
many studies report that CAD systems improve the radiologists’ accuracy, its effec-
tiveness is not undisputed. In particular, CAD systems that give a high number of
false positive markings results in radiologists not to have sufficient confidence in CAD
results172.

Screening usually consists of two-view mammography, i.e., a mediolateral oblique
(MLO) and a cranio caudal (CC) film is obtained from both breasts. Using both views
in screening improves the chance of detecting abnormalities, mainly due to additional
information from the cranio caudal that allows the lesion to be seen more easily on the
mediolateral oblique view. Furthermore, it reduces the number of false positives by of-
fering an additional perspective in which superimposition of normal breast structures
in the MLO view simulating a suspect lesion can be recognized as such.

One of the most important steps in multi view CAD techniques is to match cor-
responding regions in the available views. Few studies have been devoted to the in-
vestigation of methods for finding corresponding regions in different mammographic
views. Paqueralt et al. 53 developed a two view approach, by calculating a correspon-
dence score for each possible combination of segmented structures. Combining this
correspondence score with the single view detection score resulted in a significant im-
provement of their detection results. Highnam et al. 173 used a compression model to
determine a curve in the mediolateral oblique mammogram which corresponds to po-
tential positions of a point in the cranio caudal mammogram. Recently, Wu et al. 49

developed a CAD system that incorporates information from two-view mammograms
and bilateral mammograms where the corresponding region of interest on the con-
tralateral mammogram is identified using a regional registration technique. Qian et
al. 162 designed an ipsilateral multiview CAD system where a region of interest in one
view is matched with a region of interest in the other view based on their projection
distance and analyzed for corresponding shape and characteristic features.

In a previous project, van Engeland et al. 160 presented a method to match suspicious
regions segmented by a single-view CAD system. For all possible region combina-
tions in the MLO and CC view, a feature vector was calculated containing a number of
features that describe the similarity between both regions and the likelihood of malig-
nancy of both regions computed by single-view analysis, whereupon a correspondence
measure was being determined using a Linear Discriminant Analysis (LDA) classifier.
Finally, for every region in one view, the region in the other view with the highest cor-
respondence score was selected as the corresponding candidate. Using the obtained
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correspondences in a multi-view CAD scheme resulted in an significant improvement
of the lesion based detection performance51. However, in the case based evaluation
there was no improvement. The main reason is that links between a TP region in one
view and a FP region in an other view tend to lead to more suspicious ratings of the
false positives and less suspicious ratings of the true positives, severely degrading the
case based detection performance. Even a small number of TP-FP links can negate the
improvement of the lesion based performance. Another reason that the improvement
of the lesion based performance is not seen in the case based performance is that the
lesions of which the mass likelihood was increased after applying the two-view CAD
scheme, were already very suspicious in the other view.

In this work we aim to reduce the number of incorrect links and achieve an opti-
mal balance between finding the correct TP-TP links and discarding the TP-FP links.
The primary idea is to distinguish four classes rather than two and use a statistical
approach. After introducing the region linking method, we will present some prelimi-
nary results and discuss future work.

4.2 Materials and methods

4.2.1 Dataset

The digitized mammograms that were used in this study have been obtained from the
Dutch breast cancer screening program. In this study, 412 cases with both a MLO and
CC view available were used, 41 prior and 371 diagnostic mammograms. A diagnostic
mammogram is taken after a sign or symptom of breast cancer has been found, and
a prior mammogram is the screening mammogram taken before breast cancer was
diagnosed. In each case there was a malignant lesion visible in at least one of the views.
Approximately one half (213 cases) was digitized with a Lumisys 85 digitizer, and the
other half (199 cases) was digitized with a Canon CFS300 digitizer. All mammograms
were digitized at a pixel resolution of 50 µm and averaged down to a resolution of 200
µm, maintaining a gray value depth of 12 bits.

We will introduce first our single view detection scheme which we will briefly ex-
plain in section 4.2.2. In section 4.2.2 we will present our region matching procedure.

4.2.2 Single view detection scheme

To each image in the dataset a CAD scheme was applied and consists of the following
steps (Figure 4.1):
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• Segmentation of the mammogram into breast tissue, pectoral muscle (if image is
a MLO view), and background area.

• Initial detection step resulting in an image representing the likelihood of malig-
nancy and a number of suspect image locations (local maxima in the likelihood
image).

• Region segmentation, by dynamic programming, using the suspicious locations
as seed points.

• Final classification step to improve the prediction of malignancy using region
features.

These steps will be described in more detail in the following paragraphs.

Segmentation of the mammogram The first step of our CAD scheme is the segmen-
tation of an image into breast tissue and background, using a skin line detection algo-
rithm. Additionally, it finds the edge of the pectoralis muscle if the image is a MLO
view146. After these steps, a thickness equalization algorithm is applied to enhance the
periphery of the breast147. A similar algorithm is used to equalize background inten-
sity in the pectoralis muscle, to avoid problems with detection of masses located on or
near the pectoral boundary.

Initial mass detection step In this step we use a multi-scale technique for the detection
of stellate patterns, based on a statistical analysis of a map of the texture orientation
in mammographic images through the use of operators sensitive to stellate patterns.
The same algorithm is used to indentify patterns of radial gradient vectors, rather than
radial spiculations. For each pixel inside the breast area this results in a small number
of features calculated that represent presence of a mass and the presence of spicula-
tion44. A neural network classifies each pixel using these features and assigns a level
of suspiciousness to it. The neural network is trained using pixels sampled inside and
outside of a representative series of malignant masses. The result is an image in which
pixel values represents the likelihood that a malignant mass or architectural distortion
is present. This likelihood image is then slightly smoothed and a local maxima detec-
tion is performed. A local maximum is detected when the likelihood is above a certain
threshold and no other nearby locations have a higher likelihood value. This results
in a number of suspicious locations. Finally an algorithm searches for local maxima
that are located closer than 8 mm together and remove multiple candidate locations to
avoid multiple suspicious locations on the same lesion.
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Segmentation

Mass feature

Stellateness
feature

Likelihood
image

Region
segmentationClassification0.92 0.67

Local maxima
detection

Figure 4.1: Schematic overview of the single view CAD scheme employed in this paper. First
the mammogram is segmented into breast tissue, background tissue and the pectoral muscle.
We then calculate at each location two stellateness features for the detection of spiculation and
two mass features for the detection of a focal mass. A neural network classifier combines these
features into a likelihood of a mass at that location, resulting in a likelihood image. The most sus-
picious locations on the likelihood image (bright spots) are selected and used as seed points for
the region segmentation. After that, features are calculated for each segmented region. Finally a
second classifier combines these features into a malignancy score that represents the likelihood
that the region is malignant.
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Region segmentation Each of the detected local maxima in the previous step are used
as seed points for region segmentation, based on dynamic programming148.

Final classification For each segmented region, 81 features are calculated related to
lesion size, roughness of the boundary, linear texture, location of the region, contour
smoothness, contrast, and other image characteristics. A second neural network com-
bines these features into a malignancy score that represents the likelihood that the re-
gion is malignant.

Multi view scheme For every region in one view an annular search area is defined in
the other view based on the distance to the nipple, as this is a quite reliable landmark
on a mammogram for correlating lesions in MLO and CC views. This reference point is
also used by radiologists and remains fairly constant. To define the search area width,
we used an annotated database containing 424 cases with a mass lesion that is visible
in both the MLO and CC view. For varying width of the search area, the percentage of
lesions in the corresponding view that is within this search area is shown in Figure 4.2.
A corresponding lesion is within the search area if the difference in radial distance to
the nipple is less than half the search area width. The nipple location was estimated by
a simple procedure that assumes that the nipple is the point on the skin contour with
the largest distance to the chest or pectoral muscle. If we set the search area width to 48
mm, almost all corresponding lesions are within this search area. For large breasts the
search area is only a fraction of the breast area but for smaller breasts the search area
covered almost the whole breast area. Figure 4.3 shows that there is a small correlation
(correlation coefficient 0.17) between breast area and the absolute difference in radial
distance between the nipple and the lesion in one view and the radial distance between
the nipple and the corresponding lesion in the other view. Based on this, we set the
width of the search area from 40 to 48 mm depending on the breast area in order to
reduce the number of false positive candidate regions.

4.2.3 Correspondence features

The following paragraphs describe features we use that are invariant to compression
and positioning and have high correlation between the values in the MLO and CC
view.

Radial distance to the nipple

The radial distance between the lesion and the automatically estimated nipple position
remains fairly constant between views (Pearson’s linear correlation coefficient was 0.89
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Figure 4.2: Corresponding lesions within
the annular search region for varying
search area size.
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Figure 4.3: Correlation between breast
area and the absolute difference in dis-
tance between the nipple and the lesion
in one view and the distance between the
nipple and the corresponding lesion in the
other view. Based on this we vary the
width of the search area between 40 to 48
mm.

for our annotated database containing 424 cases). The distance feature is defined as
follows:

distance =
|dMLO − dCC |

w
(4.1)

where dMLO is the radial distance between the lesion and the nipple in the MLO
view, dCC is the radial distance between the lesion and the nipple in the CC view and
w is the search area width.

Gray scale correlation

We compute a gray scale correlation feature used by Timp et al. 55 and Sanjay-Gopal et
al. 57 for the registration of lesions in temporal mammograms. It is based on the pixel
correlation between a region of interest in the current mammogram and a candidate
region in the prior mammogram. This region of interest consists all the pixels inside
the contour of the region which represents the underlying mass lesion and a band of
pixels around the contour which represents the surrounding tissue. This is illustrated
in Figure 4.4.

The problem of finding corresponding regions in MLO and CC views is different,
since the breast is an elastically deformable soft-tissue structure that is compressed
to different extents and in different directions for the two views. To compensate for
these effects a modified measure is deduced. First a polar coordinate transformation is
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applied to the regions using the center of mass of the regions as the center.
Then Pearson’s correlation measure in polar space is calculated, allowing also a

rotation φ of the CC region with respect to the MLO region. The maximum gray scale
correlation over all angles is then used as a feature:

gray scale corr =

∑
x,y(gmlo(x, y)− gmlo)(gcc(x, y)− gcc)√

(
∑

x,y(gmlo(x, y)− gmlo)2)(
∑

x,y(gcc(x, y)− gcc)2)
(4.2)

polar corr = max(gray scale corr(φ)). (4.3)

Entropy

The Shannon’s entropy is a measure of the average information carried in a pattern,
which is widely used to quantify the smoothness of image texture. Tourassi et al. 91

used it for content based retrieval and detection of masses in screening mammograms.
We use the observation that Shannon’s entropy will be relatively low in homogeneous
patterns and increases in inhomogeneous regions to match corresponding regions. We
use the absolute difference between the entropy of the polar representation of the re-
gion of interest and the candidate region in the other view as a feature.

Histogram correlation

The histogram correlation160 between the region in the MLO view and the CC view is
determined by using two templates. The first template contains pixels inside the region
and the second template contains pixels in the band outside the contour as shown in
Figure 4.4. A lookup table of gray level values is constructed from the cumulative
distribution functions of both the MLO region and candidate region. This lookup table
is then used to approximately map the pixel values of the MLO region to pixel values
of the candidate region to correct to some degree for differences in exposure. After
the application of the lookup table, the gray value histograms for both regions are
obtained. The histogram correlation is calculated as follows:

HC = 1− 1

2

∑
g

∣∣∣∣HMLO[g]

TMLO

− HCC [g]

TCC

∣∣∣∣ (4.4)

where g is the gray level value, HMLO is the gray level histogram of the region in the
MLO view, HCC is the histogram of the candidate region in the CC view, and TMLO and
TCC are the total number of counts in the MLO, respectively, the CC histogram. The
histogram correlations of the inner and outer template are combined into one feature
as follows:

histogram correlation =
HCMLO +HCCC

2
. (4.5)
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Figure 4.4: Illustration of the inner and
outer template used for the computa-
tion of the gray scale correlation and his-
togram correlation features.

Figure 4.5: Schematic of the search area in
the CC view, based on the lesion to nipple
distance in the MLO view. The light dot
indicates the estimated nipple location.

Mass likelihood

The output of the second neural network classifier in our single-view CAD scheme
represents the mass likelihood of a region. From this mass likelihood we derive three
features: the mass likelihood of the region in the MLO view, the mass likelihood of
the candidate region in the CC view and the absolute difference between the mass
likelihood of both views.

Compactness difference

Compactness represents the roughness of an objects boundary relative to its area. This
feature is included in the single-view CAD scheme because benign masses often have
a round or oval shape compared to a more irregular shape of malignant masses. We
use the difference between the compactness of the region in the MLO view and the CC
view as correlation feature.

Linear texture difference

The linear texture feature that originates from the single-view CAD system represents
presence of linear structures inside the segmented region, as normal breast tissue often
has different texture characteristics than tumor tissue. Again we use the difference of
this feature between the region in the MLO and CC view as correlation feature.
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4.2.4 Classification of region combinations

We can distinguish four classes of region combinations. The first class contains links
between TP regions in both views. The second class and third class represent TP-FP
combinations and FP-TP combinations, in the MLO and CC views, respectively. The
fourth class deals with FP-FP combinations, which primarily include links between
normal breast structures for which no ground truth is available. This approach is
markedly different from previous research160 of our group, where a LDA classifier was
trained only on TP-TP region pairs (correct combinations) and TP-FP region pairs (in-
correct combinations). The resulting LDA classifier output, referred to as correspon-
dence score, was used to select the most likely region combination. The region was
linked if the correspondence score exceeded a fixed threshold. When linked, a number
of features that describe the resemblance between the best corresponding regions and
their likelihood of malignancy was used to train a new two-view classifier. Instead,
we propose a statistical approach by using distance-weighted k-nearest-neighbor den-
sity estimation and use the matching probabilities in the two-view classifier. We want
to differentiate between the TP-FP class and FP-TP class, considering that linking a
false positive lesion in one view to a true positive lesion in the other view has a minor
effect on the case based performance as this slightly increases the likelihood of malig-
nancy of the false positive lesion. This is relatively a small fraction of the false positives
since most mammograms in screening are normal. However, if a true positive lesion is
linked to a false positive lesion, the likelihood of malignancy of the true positive lesion
decreases, resulting in a decrease in sensitivity of the CAD system.

4.2.5 Distance-weighted k-nearest-neighbor

The k-Nearest Neighbor (kNN) technique is a straightforward yet effective method for
density estimation and has a long history in the pattern classification field. A well-
known estimate of posterior probabilities can be determined as follows174: we use a
fixed value of K neighbors, and use the training data to find an appropriate value
for volume V . To do this, a small sphere is centered on a new sample x at which we
want to estimate the unconditional density p(x), and grow the sphere until it contains
exactly K neighbors, irrespective of their class. The posterior probability of class C
given a point x is given by

p(C|x) =
p(x|C)p(C)

p(x)
=

NC
N

KC
NCV

K
NV

=
KC

K

where K is the number of neighbors, KC is the number of neighbors from class C, V is
the volume of the sphere, NC is the number of points in the training dataset from class
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C, and N is the total points in the training set. We selected K by employing 10-fold
cross-validation on the training set.

This estimation procedure treats each neighbor equally. We use a variant of the typ-
ical kNN algorithm proposed by Dudani175, the distance-weighted k-nearest neighbor
method, suggesting that training samples closest to the test sample should be given
greater weight than more distant training samples. This is especially more true in pos-
terior probability estimation than in classification, because a larger K is needed for
posterior probability estimation as it lessens the effect of discretization. We have de-
fined the neighbor’s weight to be the inverse of its distance to the query point.

4.3 Evaluation

To evaluate the performance of our statistical framework, we will compare it to the
region linking method used in a previous study160 by calculating a correspondence
score. The correspondence score is defined as the linear combination:

Correspondence score = LTPTP − αLTPFP

where LTPTP is the likelihood that the region combination is a TP-TP, LTPFP is the
likelihood that the region combination is a TP-FP, and α is a parameter that can be used
to tune between the number of TP-TP links that will be established and the number of
TP-FP links. When a threshold is put on whether to link two regions or not, increasing
α will reduce the number of TP-FP links, but increase the number of missed TP-TP
links. We will set α to 0, for the comparison with the linking method from our previous
study, where the correspondence score was the output of the LDA classifier. The LDA
classifier is trained using only the region combinations, where the region in the MLO
and/or CC view is a lesion. The kNN classifier is trained on FP-FP combinations as
well.

The classifiers are tested using 2-fold cross-validation, resulting in a correspon-
dence score for every region combination:

C0,0 C0,1 · · · C0,CC

C1,0 C1,1 C1,CC

... . . .

CMLO,0 CMLO,1 CMLO,CC


Based on this correspondence score matrix, the best corresponding link is selected,
that is, the one with the highest correspondence score. For each view we only take, at
most, eight candidate regions into account that have the highest mass likelihood. As
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Table 4.1: For every view containing a lesion we tested whether this lesion was correctly linked
with the lesion in the corresponding view (TP-TP) or linked to a false positive region (TP-FP)
using the LDA classifier from previous research and the kNN classifier used in this study.

Method TP-TP TP-FP
2-class LDA classifier 694 (80.8%) 164 (19.2%)
4-class kNN classifier 707 (82.4%) 151 (17.6%)

evaluation measure we count the TP detections that were correctly linked to the TP
detection in the other view, and the number of TP regions linked with a FP region in
the other view. FP-FP combinations were not taking into account.

4.4 Results

Results in Table 4.1 show the number of correct TP-TP links and the number of in-
correct TP-FP links using the LDA classifier from previous research51 and the kNN
classifier used in this study. Some improvement was noted in classifying correspond-
ing links but did not reach statistical significance using the McNemar’s chi-square test
(p ≤ 0.13).

Additionally, we can apply a threshold to the correspondence score, such that we
only establish a link when the score of the best corresponding link exceeds a certain
value. The reduction of TP-FP links is important as previous research51 showed that
links between TP and FP regions severely degrade detection performance. When using
a fixed threshold of 0.5, the number of TP-FP combinations decreased from 151 to 107,
at the cost of TP-TP combinations found which decreased from 707 to 643 for the kNN
classifier. Using the same threshold on the correspondence score of the LDA classifier
results in a decrease of TP-FP combinations from 164 to 152 at a cost of 14 unlinked TP-
TP combinations. This is shown in Table 4.2. If the threshold is chosen such that the
percentage of correct TP-TP combinations is 70%, the number of TP-FP combinations
decreases with 35 in favor of the kNN classifier. This decrease is significant using the
two tailed Fisher’s exact test (p ≤ 0.0008).

Changing the α to 0.3 in the correspondence score formula (Eq. 4.3) for the kNN
classifier while maintaining a fixed treshold of 0.5 on the correspondence score, the
number of TP-TP combinations decreases from 643 to 587, and the number of TP-FP
combinations decreases from 107 to 88.
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Table 4.2: For every view containing a lesion we linked the lesion with the best corresponding
lesion in the other view, only if the correspondence score is above the treshold. Then we tested
whether the lesion was correctly linked with the lesion in the corresponding view (TP-TP) or
linked to a false positive region (TP-FP). The region combinations with a correspondence score
less than the threshold are shown in the third column. The first two rows of the table show the
performance when using a fixed threshold of 0.5. The next two rows show the results when the
threshold is chosen such that we achieve 70% correct TP-TP combinations.

Method Linked TP-TP Linked TP-FP Unlinked
2-class LDA classifier with threshold 0.5 680 152 26
4-class kNN classifier with threshold 0.5 643 107 108

2-class LDA classifier with threshold, TP-TP = 70% 604 89 165
4-class kNN classifier with threshold, TP-TP = 70% 604 54 200

4.5 Conclusions and future work

We have developed a two view region matching method to link mammographic re-
gions in MLO and CC views. This method uses the distance-weighted kNN technique
to discriminate region links into the four possible categories: TP-TP, TP-FP, FP-TP, and
FP-FP. The correspondence score was set to the likelihood that the region combination
is a TP-TP link. For every view that contained a lesion we tested whether this lesion
was correctly linked with the lesion in the corresponding view. For 82.4% of the TP
regions, a correct link could be established, as is shown in Table 4.1. The maximum
performance that could have been achieved was 92.4%, because not all cases contained
an annotated TP region in both views. Additionally, we can apply a threshold to the
correspondence score, such that we only establish a link when the score of the best cor-
responding link exceeds a certain value. This reduces the amount of TP-FP combina-
tions considerably, especially in 7.6% of the TP regions where there was no annotated
TP region in the other view. Changing the α in the correspondence score formula can
be used to further reduce the number of false TP-FP combinations, but at the cost of
TP-TP combinations found. Previous research51 showed that links between TP and FP
regions severely degrade detection performance. We expect that the decrease in TP-TP
combinations has a less negative effect on the detection performance of the two-view
classifier whereas the regions are independently analyzed by the single-view CAD sys-
tem. If the threshold is chosen such that the percentage of correct TP-TP combinations
is 70%, the number of TP-FP combinations decreases significantly when using the 4-
class kNN classifier (Fisher’s exact test, p ≤ 0.0008).

Several reasons could be given as causes of incorrect links. The most important
cause is the occurrence of two regions with the same distance to the nipple and a near
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similar feature vector. Also incorrect segmentations such as multiple overlapping re-
gions in the same lesion in the first stages of our CAD scheme is a common cause for
incorrect links. The linking performance without using a threshold is better using the
4-class kNN classifier in comparison to the 2-class LDA classifier, but the improvement
did not reach statistical significance using the McNemar’s chi-square test (p ≤ 0.13).
However, the real performance gain is expected in the next stage of our CAD scheme
where we will combine the information from our single view CAD system with corre-
spondence information and the four class probabilities from our linking method.

Another application of this method we recently implemented is linking CAD re-
gions on a mammographic workstation where a radiologist points at a region of inter-
est in one view and the CAD system presents the corresponding region in the other
view. The effect of presenting CAD results in both views to the radiologists needs to
be investigated further. Future work includes developing a context dependent region
matching scheme, which will also take the number and likelihood of possible alterna-
tives into account to improve the case based sensitivity of our single view detection
system. To reduce the number of incorrect links that are caused by similar regions
with almost the same distance to the nipple, we will investigate additional features to
improve linking.
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Optimizing case-based detection performance in a multi-view CAD system

Abstract

When reading mammograms, radiologists combine information from multiple views
to detect abnormalities. Most computer-aided detection (CAD) systems, however, use
primitive methods for inclusion of multi-view context or analyze each view indepen-
dently. In previous research it was found that in mammography lesion-based detection
performance of CAD systems can be improved when correspondences between MLO
and CC views are taken into account. However, detection at case level detection did
not improve. In this paper, we propose a new learning method for multi-view CAD
systems, which is aimed at optimizing case-based detection performance. The method
builds on a single-view lesion detection system and a correspondence classifier. The
latter provides class probabilities for the various types of region pairs and correspon-
dence features. The correspondence classifier output is used to bias the selection of
training patterns for a multi-view CAD system. In this way training can be forced to
focus on optimization of case-based detection performance. The method is applied to
the problem of detecting malignant masses and architectural distortions. Experiments
involve 454 mammograms consisting of 4 views with a malignant region visible in at
least one of the views. To evaluate performance, 5-fold cross validation and FROC
analysis was performed. Bootstrapping was used for statistical analysis. A significant
increase of case-based detection performance was found when the proposed method
was used. Mean sensitivity increased by 4.7% in the range of 0.01-0.5 false positives
per image.
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5.1 Introduction

Breast cancer screening is generally based on two-view mammography in which medi-
olateral oblique (MLO) and a cranio caudal (CC) projections are obtained from both
breasts. When reading mammograms, radiologists combine information from all avail-
able views. They compare MLO and CC views, look for asymmetry, and evaluate
changes with respect to prior mammograms. CAD systems are nowadays widely
used in breast cancer screening. These include sensitive algorithms for the detection
of masses and clustered microcalcifications. However, due to a higher rate of false
positives, CAD systems do not yet match the performance of human readers. Use of
multi-view context is a known weakness of current CAD technology. In most systems
mammograms acquired from the same patient are processed and analyzed indepen-
dently. In this study we focus on development of a CAD system for the detection of
masses and architectural distortions that utilizes correspondence between MLO and
CC views. Radiologists compare the two ipsilateral mammographic views to decide
whether or not a suspicious lesion is present. If a suspicious region in one view has
certain features in common with a suspicious region in the other view, there is a higher
probability that the region is a true lesion. Using both views in screening also improves
the chance of detecting abnormalities, because abnormalities may be (partly) obscured
in one projection by overlapping glandular tissue. In addition, by offering an addi-
tional perspective, superimposition of normal breast structures simulating a suspect
lesion can be recognized, which reduces the risk of false positives.

Methods to combine information from ipsilateral mammographic views to improve
computer aided detection of masses have been reported by several researchers. As a
first step, it is commonly proposed to match suspected mass regions detected in an
initial single-view detection stage. Matching of corresponding regions in MLO and CC
views has also been studied as a subject by itself52,160,176. Typically, supervised classifi-
cation is used to compute the likelihood that regions in a pair correspond to the same
true positive (TP) region, based on location relative to the nipple and region similarity.
Once region correspondence scores have been computed, information from the two
views can be fused. Paquerault et al.53 proposed to rank the single-view and corre-
spondence scores within each image, and to average them subsequently. A significant
improvement of detection performance was obtained by using this scheme. However,
in this preliminary study only abnormal cases with a mass visible in both views were
used. With normal cases included the ranking scheme would not work so well, as as-
signment of high rankings in normal cases would lead to many strong false positives.
More recent studies involved fusion schemes based on similarity features and neural
networks51,177 and Bayesian networks178. In these studies a significant improvement
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of lesion based detection performance was obtained, while case-based performance re-
mained similar. This is unfortunate, as in clinical practice case-based sensitivity, which
considers a lesion to be detected if it is reported in either one or two views, is consid-
ered to be more relevant. There may be some benefit though if CAD detects a region in
both views, as studies suggest that readers are more likely to act on CAD prompts if a
region is marked in both views. This motivated Zheng et al.179 to develop a multi-view
CAD system that aims to maintain the same case-based sensitivity level while increas-
ing the number of masses being detected on both ipsilateral views. It was found that
the multi-view approach reduced the false positive (FP) detection rate by 23.7% while
maintaining a case-based detection sensitivity of 74.4%.

Results from the previous studies indicate that existing systems for combining in-
formation from ipsilateral views are effective in increasing the suspiciousness rating
of subtle lesions if they are paired with a more obvious abnormality in the other view.
However, it seems that with existing methods the rating of the more obvious true posi-
tive in a pair is hardly affected by being paired with its counterpart in the other projec-
tion. In addition, when a true positive is linked to a false positive, the rating of the true
positive will generally decrease after applying the multi-view scheme. A combination
of these effects may explain why case sensitivity is harder to improve than lesion sen-
sitivity. It is assumed though that if performance of the correspondence classifier is
high enough one should be able to improve case sensitivity with multi-view analysis,
as in contrast to true positives most false positives do not match with regions in other
ipsilateral views.

The aim of this study is to use an extended linking method for matching corre-
sponding regions in MLO and CC views to improve mass detection performance of
our single-view CAD system. Specifically, we investigate how multi-view analysis can
be made more effective for improving case-based performance. To this end we study
modification of the learning rules of the CAD system using the class probabilities from
our linking method and the inclusion of correspondence features.

5.2 Preliminaries

In this study we use a single-view detection scheme that consists of the following
stages: segmentation and preprocessing, initial detection of suspect image locations,
region segmentation, and final single-view classification (Figure 5.1). These steps have
been described in detail in previous publications44,145,180. In the following paragraphs,
a brief description will be given.
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Figure 5.1: Schematic diagram of our two-view computer aided detection system for mass de-
tection on mammograms.
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5.2.1 Segmentation and preprocessing

As a first step in the detection scheme, the mammogram is segmented into breast tis-
sue, pectoral muscle (if the image is a MLO view), and the background area. Back-
ground pixels are classified by using thresholding in combination with a sequence of
morphological operators146. Subsequently, the pectoral muscle is segmented from the
breast region in two steps. The first is based on straight line estimation using a modi-
fied Hough transform as described by Karssemeijer146. However, the boundary of the
pectoral muscle is generally slightly curved. Therefore, in a second step, the boundary
is determined more accurately by an optimal path search near the initial estimate using
the dynamic programming method. After these steps, a thickness equalization algo-
rithm is applied to enhance the periphery of the breast147. A similar algorithm is used
in MLO images to equalize the background intensity in the pectoral muscle, to facili-
tate detection of masses located on or near the pectoral boundary. Finally, the nipple
location was estimated by a procedure that assumes that the nipple is the point on the
skin contour with the largest distance to the chest in the CC view or pectoral muscle
in the MLO view51–53,181. In previous research, this method was evaluated and results
appeared be close to the true nipple position (mean error = 12.94mm)182.

5.2.2 Detection mass regions in single-views

In an initial detection stage, in each image a number of candidate locations are de-
termined which are relevant enough for further analysis given the properties of the
pattern in which they are located. To this end, locations in the image area are sampled
at an interval of 1.6 mm, and at each location five features are computed that repre-
sent the presence of spiculation and a central mass44,180. For the detection of stellate
patterns, a multi-scale technique is used based on a statistical analysis of a map of
the texture orientation in mammographic images through the use of operators that are
sensitive to radial patterns of straight lines. The same algorithm is used to identify
patterns of radial gradient vectors, rather than radial spiculations, yielding a high re-
sponse in the central zone of mass lesions. An ensemble of five neural networks, each
randomly initialized and trained on a small independent dataset, is used to classify
each pixel on a regular grid using these features. Averaging the outputs of the 5 neural
networks results in an image in which pixel values represent the likelihood that a mass
or architectural distortion is present. This likelihood map is then slightly smoothed
and its local maxima are determined. A local maximum is selected as a candidate loca-
tion when the likelihood is above a certain threshold. This results in a list of locations
that are of interest for further investigation. Because the threshold is fixed, the number
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of initial locations varies from image to image. As subtle true positive locations may
have a low likelihood, a low threshold is chosen to minimize the risk of missing true
lesions. This typically leads to a high number of false positive candidate locations. In
this study on average 20 locations were selected per image.

In the next stage, each of the detected local maxima in the previous step is used as
seed point for region segmentation. We use a method based on polar resampling and
dynamic programming which appeared to outperform other methods in a previous
study148. For each segmented region, region based features are computed representing
properties as region contrast, roughness of the boundary, linear texture, relative loca-
tion in the breast, contour smoothness, lesion size and other region characteristics. In
addition to these features, the five central mass and spiculation features, and the mass
likelihood score from the initial detection stage are also used by the single-view region
classifier.

The neural networks used in our CAD system, are multilayer perceptrons with one
hidden layer and an output layer of one neuron. The number of hidden nodes used in
the initial pixel classifying stage is five. In the region classifying stage twelve hidden
nodes are used. The standard back-propagation (BP) technique with a sigmoid activa-
tion function is used to learn the network to map abnormal patterns to a value close to
one and normal patterns to a value close to zero. Before training, the features are nor-
malized to zero mean and unit variance using the images in the training set. To avoid
overtraining, an independent stopset is used to adaptively determine the number of
training cycles.

5.3 Methods

Figure 5.1 shows the schematic outline of the multi-view CAD scheme employed in
this paper. The multi-view detection scheme is described in detail below.

5.3.1 Matching regions in ipsilateral views

An important step in multi-view CAD schemes is to match corresponding regions in
mediolateral oblique (MLO) and craniocaudal (CC) views of the breast. Because the
breast is compressed to reduce the x-ray dose administered to the beast tissue, it is dif-
ficult to relate locations of potential mass regions in the MLO view to those in the CC
view. The large nonlinear deformation of soft tissue such as the breast makes registra-
tion extremely difficult. Most of the matching approaches are therefore based on using
a set of landmarks, such as the location of the nipple and points on the pectoral muscle
boundary. Two main methods of triangulating a lesion in two projections have been
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described in textbooks and journal articles52,53,79,179,181,183–185: the arc-based method and
the straight-line based method.

Figure 5.2: Schematic of the geometry-based region matching for finding potential correspond-
ing objects by defining an arc-based search area in the CC view (middle), and a straight-line
based search area (right). The light dot indicates the estimated nipple location.
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Figure 5.3: Corresponding lesions within the annular search region for varying search area size.

The arc-based method is based on the idea that the distance between the nipple and
lesion remains fairly constant during breast compression, which may be explained by
the fact that mammographers pull away the breast from the chest wall for optimal po-
sitioning. To match a suspicious mass region to a region in the other view, the distance
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between the nipple and the center of the mass region is computed. Then an arc is de-
fined in the ipsilateral view with this same distance to the nipple. A search area with a
certain width is defined around this arc (Figure 5.2).

The straight line-based method is based on the general concept that the chest wall
constrains the deformation during breast compression in such a way that points in the
breast move forward with displacement of similar distances under the two views52,79.
In this method a straight line is defined parallel to the chest wall or pectoral muscle (for
the MLO views). In this approach, both the nipple and chest wall has to be detected on
both views. Because the chest wall is rarely depicted on the CC view, it was assumed
to be parallel to the image edge. The pectoral muscle depicted on the MLO view was
automatically detected by the CAD system using a Hough transform based method.
To match a suspect mass region in one view to the corresponding mass region in the
other view, the distance between the nipple and the center of mass projected onto the
centerline is computed. The centerline is the line that is perpendicular to the chest wall
and goes through the nipple. This projected distance is then mapped to the centerline
of the other view and a straight line parallel to the chest wall is defined. The distance
from potential corresponding regions to this straight line is used as a feature to match
regions.

To determine the optimal search area width, we used an annotated database con-
taining 424 cases with a mass lesion that is visible in both the MLO and CC view. For
varying width of the search area, the percentage of lesions in the corresponding view
that was within this search area was determined (Figure 5.3). The arc based method
required a search area width of 48 mm to enable matching all pairs. Because there is a
correlation between breast area and the absolute difference in radial distance between
the nipple and the lesion in the two views, we made the width of the search area de-
pendent on the breast area, in a range 40 to 48 mm. This reduced the number of false
positive candidate regions185. For the straight line-based method, a smaller search area
width of 37 mm was required.

To match lesions in MLO and CC views, for every possible combination of mass
regions a number of similarity features are computed. We define these features in such
a way that they are insensitive to differences in compression and positioning. The
similarity features are described below.

• Difference in distance:

ddiff =
|dMLO − dCC |

w
(5.1)

where dMLO is the distance between the lesion and the nipple in the MLO view,
dCC is the distance between the lesion and the nipple in the CC view and w is the
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search area width for the arc based-method. For the straight line-based method,
dMLO and dCC are the distances from the lesion in the MLO view and CC view,
respectively, to the straight line and w is the search area width.

• Pixelwise correlation:

In previous research pixelwise correlation of regions has been successfully used
for matching regions in temporal mammogram pairs55,57. We apply the same
method here to the problem of matching MLO and CC region pairs, even though
this method seems naive because of the rotation between the two projections. To
compute the correlation a template T is defined by dilating the segmented region
in the source view, i.e. the view in which the region to be matched is located.
Pixelwise correlation is defined as

PC =

∑
r∈T

(gs(r)− gs)(gt(T (r))− gt)√
(
∑
r∈T

(gs(r)− gs)2)(
∑
r∈T

(gt(T (r))− gt)2)
(5.2)

where r is the location inside the mass template, gs and gt are pixel values in the
source and target views, and T (r) is the location in the target view corresponding
to r, with T a translation to match the centers of mass of the regions. The average
pixel values in the mass templates are given by gs and gt.

• Maximum pixelwise correlation in polar space:

The problem of finding corresponding regions in MLO and CC views is different
from finding corresponding regions in temporal pairs, since the breast is com-
pressed and deformed to different extents and in different directions in the two
views. To minimize influence of these acquisition differences on pixelwise corre-
lation, a modified correlation measure is defined. First a polar coordinate trans-
formation is applied to each region using the center of mass of the region as the
center. Then Pearson’s correlation coefficient is calculated between the trans-
formed regions, using a fixed diameter D of the region, and allowing a rotation
φ of the CC region with respect to the MLO region. The maximum pixelwise
correlation MPCP over all angles is then used as a feature.

• Entropy:

Shannon’s entropy is a measure of the average information carried in a pattern,
which is widely used to quantify the smoothness of image texture. Tourassi et
al. 91 used it for content based retrieval and detection of masses in screening mam-
mograms. Entropy will be relatively low in homogeneous patterns and is higher
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in inhomogeneous regions. We use the absolute difference between the entropy
of the region of interest and the candidate region in the other view as a measure
of dissimilarity.

• Histogram correlation:

Histogram correlation160 can be used as a similarity feature but differences in im-
age acquisition may strongly affect its value. To correct to some degree for differ-
ences in acquisition parameters we applied non-parametric histogram matching.
In each of the two views a circular area with a radius of 2.5 cm is defined with
the center of mass of the region as centerpoint. From both areas the cumulative
distribution function is obtained, and a grey level transform is determined which
maps the cumulative distribution function of the target area to that of the source
area. After applying this transform to the histogram of the target area, differences
due to exposure and compression are minimized. It is noted that histograms of
the segmented regions will still differ, as the average diameter of true positive
lesions is approximately 1.5 cm, which is much smaller than the diameter of the
circular areas used for histogram matching. We compute a dual histogram cor-
relation feature DHC. For this purpose two gray value histograms are obtained
of both regions using two templates. The first template contains pixels inside the
region and the second template contains pixels in a band outside the template. A
histogram correlation measure is then calculated for both templates using:

HC = 1− 1

2

∑
g

|HMLO(g)−HCC(g)| (5.3)

whereH(g) denotes the fraction of pixels with gray level g in the region template.
The histogram correlations of the inner and outer template are combined into a
dual histogram correlation feature as follows:

DHC =
HCinner +HCouter

2
. (5.4)

• Mass likelihood:

The output of the single-view CAD scheme represents the mass likelihood of a
region. From this mass likelihood we derive three features: the mass likelihood
of the region in the MLO view, the mass likelihood of the candidate region in the
CC view, and the absolute difference between the mass likelihood of both views.
When the absolute difference is small between the mass likelihoods of the regions
in both views, there is a higher chance that the regions depict the same lesion.
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• Compactness difference:

Compactness represents the roughness of an object‘s boundary relative to its area.
This feature is included in the single-view CAD scheme because benign masses
often have a round or oval shape while malignant masses generally have more
irregular shapes. We use the difference between compactness of regions in the
MLO and CC views as a similarity feature. Compactness (C) is computed as the
ratio of the squared perimeter (P 2) to the area (A), i.e.,

C =
P 2

A

The smallest value of compactness is 4π when the shape is a circle. For more
complex shapes, the compactness becomes larger. Therefore this feature is nor-
malized by dividing it by 4π.

• Linear texture difference

A linear texture feature that originates from the single-view CAD system repre-
sents the presence of linear structures inside the segmented region44. We include
this because normal breast tissue often has different texture characteristics than
tumor tissue. We use the difference of this feature between the region in the MLO
and CC view as a similarity feature.

Using all potential combinations of the mass candidates in the MLO view and the
mass candidates in the CC view a k-Nearest Neighbour (kNN) classifier is trained to
discriminate MLO/CC region combinations into four possible categories. The first
class contains links between true positive (TP) regions in both views, which we will
refer to as the TP-TP class. The second class represents combinations between a true
positive region and a false positive region in the ipsilateral view (TP-FP), the third class
represents combinations between a false positive region and a true positive region in
the ipsilateral view (FP-TP). The fourth class encompasses the FP-FP combinations,
which primarily include links between normal breast structures for which no ground
truth is available. The training and testing procedure is detailed in Section 5.4.2. We
define the correspondence score as the likelihood that a region combination represents
two true positives. The number of nearest neighbours (k) of the linking classifier was
determined experimentally and was set to 27. We chose a high number of k because
we use the k-NN classifier for posterior probability estimation rather than hard classi-
fication.

In our method each mass candidate detected by the single-view CAD system is
linked to the region in the ipsilateral view with the highest correspondence score. As a
consequence, by matching a region to the most likely candidate in the ipsilateral view,
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the mapping obtained is non-injective. It is noted that in our approach this is not a
disadvantage, as we aim at assessing suspiciousness of the individual regions using
correlation with the other view as an additional source of information, rather than
attempting to obtain a symmetric solution in which region pairs are classified.

5.3.2 Two-view classification

After application of the matching algorithm all regions detected in the single-view
scheme are processed further by a new classification module, in which the additional
information from the other view is added. For this purpose, a new neural network
ensemble with a similar configuration as the single-view classifier is trained. As input
a selection of features from the single-view CAD scheme are used, extended with sim-
ilarity features representing correspondence with the matched region in the ipsilateral
view. In addition, the four class probabilities computed by the linking algorithm are
included as features. It is noted that the two-view classification results in a new rating
of suspiciousness for every individual region, but that we do not attempt to obtain a
combined rating for region pairs. In some cases a region cannot be matched with a cor-
responding region, due to the absence of potential candidate region in the ipsilateral
view. The correspondence score needs to exceed a threshold for regions to be matched.
When no match is found, we could use the output of the single-view classifier as the
final probability of that region. However, this would ignore the fact that the absence
of a matching candidate in the other view also gives information about the suspicious-
ness of a lesion. We know that when a radiologist does not observe a lesion in both
views this has influence on interpretation and decision making. Actually, this is a com-
plicated process that involves reasoning about possible causes for not observing the
abnormality. In a dense breast, for instance, occlusion of a lesion by glandular tissue is
very common. To be able to process all regions with the two-view scheme we use the
following approach. When no correspondence can be established for a region (1) the
similarity features of that region are set to zero (i.e. there is no correlation between the
regions), (2) the class probability that the region is a link between two true positives
are set to zero, and (3) the other three class probabilities are set to one third. In this
manner, we are able to process unlinked regions with the two-view classifier in the
training and testing phases.

For two-view classification the single-view feature vector was extended with the
two-view features and the four class probabilities belonging to this region combina-
tion. This resulted in a feature vector of 83 features. To select features for the two-view
classifier, we used the sequential floating forward selection (SFFS) algorithm48, which
is based on work by186 and Spence and Sajda187. The cross-validation procedure in
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which we select features and evaluate the performance of the two-view classifier is
described in detail in the Evaluation section.

5.3.3 Case-based learning

The idea of applying the two-view classifier is that the suspiciousness of a region
should be increased when it is linked to a candidate region in the other view with
similar characteristics. This is similar to mammographic screening practice: radiolo-
gists judge whether or not a lesion is present by comparing both views. If an abnormal
region is observed in both views, the likelihood for cancer increases. Suspicious false-
positive regions for which no similar suspicious region can be found in the other view
will get a lower malignancy score. This is the desired effect we are trying to mimic
with two-view analysis. However, linking a true-positive region to a false-positive re-
gion will generally result in a lower malignancy score for the true-positive region after
applying the two-view classifier. In a previous study, it was shown that this nega-
tive effect cancelled out the positive effect the two-view classifier had on true-positive
regions that were linked to the correct region in the ipsilateral view.

To improve detection performance on a case level, we propose a method that makes
use of correspondence information in training the two view classifier. In this study
we use a neural network with the same configuration as the original two-view classi-
fier, but with a modified training scheme that uses the correspondence information to
adapt its learning. The idea we explore is to exclude true positive candidate lesions
in the training stage if they have weaker signs of malignancy compared to their coun-
terpart in the other view. In this way the two view classifier can be tuned to focus its
attention on detecting lesions in at least one of the views, rather than in both views.
We expect that with this method case-based performance will increase, possibly at the
cost of lesion-based performance. We used two thresholds in this approach to deter-
mine when a lesion should be excluded in the training stage. One threshold defines
a maximum malignancy score used to determine lesions that are eligible for exclu-
sion. Lesions with higher scores are always included as training pattern. The second
threshold defines a minimum difference in malignancy scores between two true posi-
tive lesions. The difference between the score of the lesion with the lower rating and
that of its corresponding region in the other view should be larger than the threshold
in order to make it eligible for exclusion. Both threshold criteria should be met to ex-
clude a pattern from the training set. If the absolute difference between both lesions is
small then both patterns are included in the training process. An example of a mam-
mographic case where a poorly visible lesion is excluded from the training process is
shown in Figure 5.4.
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(a) Left MLO (b) Left CC

Figure 5.4: Example of a two-view mammographic case containing an invasive ductal carcinoma
marked by the arrow. The mass was detected in the MLO view (a) by the single-view CAD
system and was assigned a high malignancy rating. In the CC view (b) the mass was also found
but with a very low suspiciousness rating. When using the case-based learning rule, the lesion
in the CC view was excluded as primary region in the two-view classifier training.

5.4 Experiments and Results

5.4.1 Materials

The database used in this study consisted of 454 abnormal mammograms (1816 im-
ages) and 483 normal mammograms (1932 images) that were verified to remain cancer-
free for at least 2 years after the selected exam. All abnormal cases had a visible mass
or architectural distortion in at least one view, that was verified by pathology reports
to be malignant. All cases consisted of four images: the MLO and CC projections of the
right and left breast. For some patients, also prior examinations were available. These
were treated as separate cases in this study. Of the abnormal cases, 63 were prior exam-
inations of screen-detected or interval cancers (252 images). 406 cases were digitized
with a Lumisys 85 scanner, and 531 were digitized with a Canon CFS300 scanner. All
mammograms were digitized at a pixel resolution of 50 µm and averaged down to a
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resolution of 200 µm, while maintaining a gray value depth of 12 bits. The malignant
masses were annotated by a researcher under supervision of an experienced radiolo-
gist. These annotations were used as the ground truth. The initial classifier ensemble,
described in paragraph 5.2.2, was trained using a small independent data set (302 im-
ages).

5.4.2 Evaluation

Detection performance was tested using free-response receiver operating characteris-
tic (FROC) analysis and 5-fold cross-validation. When splitting the data into a training
and test set, we took care that the images belonging to the same case were always as-
signed to the same set. The cross-validation subsets used in the single-view scheme
and in the multi-view scheme were exactly the same, and the test set was used only
for testing and never for training in the different stages of the detection scheme. In this
way, we ensured that no bias was introduced. For each fold the feature selection is per-
formed on the training set. After the 5-fold cross-validation the malignancy scores for
all regions in the 5 test datasets were pooled together and two types of FROC curves
were computed, a lesion-based and case-based curve. In the lesion based evaluation
sensitivity was computed as the number of lesions detected divided by the total num-
ber of lesions. In the case-based evaluation, a case is counted as a true positive when a
true positive lesion is detected in at least one of the two views. A CAD region was con-
sidered true-positive if the center of mass of the CAD region was inside the annotated
region (ground truth).

To get a single performance measure, the mean true positive fraction in a range of
false positive rates on a logarithmic scale was computed:

MTPF =
1

ln 50

∫ 0.5

0.01

TPF (f)

f
df, (5.5)

where f the number of false positives in normal images and TPF (f) is FROC curve,
i.e. the true positive fraction as a function of f . We chose the false positive range from
0.01 to 0.5 FP/image as this is the range where radiologists and clinical CAD systems
operate in screening practice.

Statistical significance between the single-view and two-view classifier detection
performance was determined using the bootstrap method134,135. Cases were sampled
with replacement from the cross validation set 5000 times. Every bootstrap sample
had the same number of cases as the original data set. For each resampling two FROC
curves were constructed using the malignancy scores obtained for the two methods to
be compared. Next, the difference in MTPF was computed. After resampling 5000
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times, it resulted in 5000 values of ∆MTPF . P-values were defined as the fraction of
∆MTPF values that were negative or zero.

It is noted that in the region matching process not all regions initially detected by
the single-view CAD scheme were included, to reduce the computational time. For
each view we took at most eight candidate regions into account, where those with the
highest likelihood of malignancy were selected.

5.4.3 Results

Results in Table 5.1 show the number of correct TP-TP links and the number of in-
correct TP-FP links when no threshold is used on the correspondence score and when
we apply a threshold to the correspondence score (probability that a link is a TP-TP),
such that we only establish a link when the probability of the best corresponding link
exceeds 0.5. With thresholding the percentage of false TP-FP links was 11.1%, the per-
centage of correct TP-TP combinations was 76.9%, and the percentage of unlinked true
positives was 12.0% for the straight-line based method. Based on the results in Ta-
ble 5.1, we used the straight-line based method and the threshold of 0.5 when training
the multi-view classifiers.

Table 5.1: Linking results. For every view containing a lesion we counted the number of times it
was correctly linked with the lesion in the corresponding view (TP-TP) and the number of times
it was linked to a false-positive region (TP-FP) using the four class kNN classifier. The second
and fourth row show the results when a lesion is only linked if the correspondence score exceeds
the fixed threshold of 0.5. AB = arc-based method, SLB = straight line-based method.

Linking method Linked TP-TP Linked TP-FP Unlinked

AB without threshold 724(79.6%) 186(20.4%) −
AB with threshold 682(74.9%) 104(11.4%) 124(13.6%)

SLB without threshold 729(80.1%) 181(19.9%) −
SLB with threshold 700(76.9%) 101(11.1%) 109(12.0%)

We compared the performance of the two types of multi-view detection schemes
and the single-view classifier with each other. The results of the comparisons are listed
in Tables 5.2 and 5.3. The second column in Table 5.2 shows the case-based mean
true positive fraction MTPFCB obtained, and in Table 5.3 the lesion-based MTPFLB.
The third and fourth columns show the results of the statistical analysis where the
significant differences are shown in bold.
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In Table 5.2 the cased-based performances of two types of multi-view classifiers are
compared to each other, and to the single-view classifier. Using the case-based learning
rule (CBL) in the multi-view classifier resulted in a statistically significant increase in
performance compared to the multi-view classifier without using the CBL rule and to
the single-view classifier. The difference in case-based performance between the single-
view classifier and the multi-view classifier without the case-based learning rule is not
statistically significant.

In Figure 5.5 the case-based FROC curves are shown obtained for the single-view
classifier, the multi-view classifier without the case-based learning rule and the multi-
view classifier with case-based learning. The sensitivity was defined as the fraction of
abnormal cases detected as described in the methods section. In Figure 5.6 the lesion-
based FROC curves are shown in which the sensitivity was defined as the fraction of
abnormal lesions detected.

Table 5.2: Case-based mean sensitivity MTPFCB for the single-view classifier, for the multi-
view classifier and the multi-view classifier with the case-based learning rule.

Classifier MTPFCB Compared to p-value

Single-view 0.642 - -

Multi-view 0.658 Single-view 0.0964

Multi-view CBL 0.689 Single-view 0.0004

Multi-view 0.0198

Table 5.3: Lesion-based mean sensitivity MTPFLB for the single-view classifier, for the multi-
view classifier and the multi-view classifier with the case-based learning rule.

Classifier MTPFLB Compared to p-value

Single-view 0.531 - -

Multi-view 0.573 Single-view <0.0001

Multi-view CBL 0.557 Single-view 0.0180

Multi-view 0.1232
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Figure 5.5: Case-based FROC curves for the single-view classifier, the multi-view classifier, and
the multi-view classifier with the case-based learning rule.

5.5 Discussion and conclusions

In this paper we investigated a novel method to combine information in a multi-view
CAD system. The research was initiated because it was found in previous research that
case-based detection performance of a mammography CAD system did not increase
with existing methods for combining information obtained from ipsilateral views. In
this study, we aimed to improve case-based performance by 1) using an extended re-
gion matching scheme using a 4-class region pair classifier, and by 2) introducing a
novel learning rule for the two-view detector, in which true positive regions in ipsilat-
eral views are not used as training patterns when they are much less suspicious than
corresponding projections in the other view. Results demonstrate that with this new
approach case-based detection performance increases significantly in comparison to
the single-view CAD system. If appropriate, the case-based learning rule can be ad-
justed to optimize detecting of abnormalities in both views. The presented scheme
can be applied to other CAD applications where multiple projections of lesions are
involved.

In a recent paper, Zheng et. al.52 compared three methods aimed at matching breast
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Figure 5.6: Lesion-based FROC curves for the single-view classifier, the multi-view classifier,
and the multi-view classifier with the case-based learning rule.

masses depicted on two views and found that the straight line-based method required
the smallest search area and achieved the highest level of CAD performance. A prelim-
inary paper of the same group79 demonstrated that the arc-based method and straight
line-based method were comparable in identifying true masses from triangulated ob-
servations on two views. However, they favored the arc-based method because only
the nipple location is required for localization which made it relatively easy to imple-
ment. Based on these results and the evidence that the correlation between distances
from the lesion to the nipple in CC and MLO views is high185, we chose to use the
arc-based method in previous studies. In this study we have included both match-
ing methods. Our results confirm those of Zheng et.al. 52 that the straight line-based
method requires a smaller search area, but the performance difference is less in our
dataset. The assumption that the chest wall can be acceptably represented by a straight
line, and the fact that the chest wall is not depicted in most CC views, could affect the
performance of the straight line-based method. Our automated nipple estimation algo-
rithm assumes that the nipple is the point on the skin contour with the largest distance
to the chest in the CC view or pectoral muscle in the MLO view. Although nipple loca-
tions estimated in this way are found to be quite close to the true nipple position, there
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are problems with this method when the nipple is not imaged within the field of view,
which happens regularly with larger breasts. A better estimation of the nipple position
could be made in such situations by extrapolating the nipple position182. In the same
study it was shown that it can be difficult to locate the nipple in film mammograms
by human observers, because the nipple is often hardly visible due to the high optical
density of the outer breast edge. Also, there is variability in annotations by humans
caused by different methods of annotation. Some annotate the nipple on the skin line,
some annotate the nipple at its tip. To investigate if it would be feasible to use the
automatically detected nipple positions for correlating lesions in the MLO and the CC
view, the authors calculated for two annotated datasets the Pearson correlation coeffi-
cient between the distance of the lesion to the nipple in the MLO view and CC view.
Neither the automated nipple detection method gives significantly different values of
the Pearson correlation coefficient than the manually annotated positions. Hence, it
is possible to replace the real nipple locations by the detected positions from the au-
tomated nipple estimation algorithm to correlate findings in CC and MLO view. It is
noted that full-field digital mammography systems have a larger detector area than
the films/screen systems used in this study, and that detection of the nipple using lo-
cal features is much easier in digital mammography due to the higher dynamic range
of digital systems. In a multi-view detection scheme it is important that the number
of false correspondences between a TP in one view and a FP in the other view is as
low as possible. Links between a TP and FP will generally lead to an increased ma-
lignancy rating of the FP and a decreased malignancy rating of the TP, which has a
strong negative effect on detection performance, especially when no case-based learn-
ing rule is applied. We applied a threshold to the correspondence scores, such that
links were only established when the probability of a TP-TP pair was high enough.
By doing this the percentage of false TP-FP links decreased considerably, at the cost
of losing some correct TP-TP links (see Table 5.1). The negative effect of not linking
TP’s on the detection performance appeared to be less than negative effect of false TP-
FP links. However, to further improve two-view analysis it is important to continue
putting effort into improving the linking process.
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Using computer aided detection in mammography as a decision support

Abstract

Objective: To evaluate the effectiveness of an interactive computer-aided detection (CAD)
system for reading mammograms to improve decision making.

Methods: A dedicated mammographic workstation has been developed in which read-
ers can probe image locations for the presence of CAD information. If present, CAD
findings are displayed with the computed malignancy rating. A reader study was
conducted in which four screening radiologists and five non-radiologists participated
to study the effect of this system on detection performance. The participants read 120
cases of which 40 cases had a malignant mass that was missed at the original screening.
The readers read each mammogram both with and without CAD in separate sessions.
Each reader reported localized findings and assigned a malignancy score per finding.
Mean sensitivity was computed in an interval of false-positive fractions less than 10%.

Results: Mean sensitivity was 25.1% in the sessions without CAD and 34.8% in the
CAD-assisted sessions. The increase in detection performance was significant (p=0.012).
Average reading time was 84.7 ± 61.5 seconds/case in the unaided sessions and was
not significantly higher when interactive CAD was used (85.9± 57.8 seconds/case).

Conclusion: Interactive use of CAD in mammography may be more effective than tra-
ditional CAD for improving mass detection without affecting reading time.
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6.1 Introduction

Computer aided detection (CAD) was introduced in breast cancer screening as a tech-
nology to avoid perceptual oversights and its effectiveness has been demonstrated in
many studies 66,69,188. Nevertheless, there is a continuing debate regarding the useful-
ness of CAD71,189. While most radiologists agree that CAD systems have value because
of their high performance in detecting microcalcifications, many believe that current
CAD algorithms for masses and architectural distortions have too many false-positives
to allow effective use190–192. Evidently, more research is needed to improve CAD algo-
rithms. However, the lack of confidence some radiologists have in CAD may also be
another reason. In previous research strong evidence was found that the performance
of CAD algorithms may not be a problem, but that the concept of CAD may need to
be revised85. The assumption on which CAD is currently based is that significant le-
sions initially missed by radiologists will be acted upon when CAD marks them. In
practice, however, many lesions are not missed by perceptual oversight but due to in-
correct interpretation5,83,84. Therefore, it is not surprising that studies reveal that many
significant lesions are still missed even when CAD marks them22,68,193,194. To prevent
such interpretation errors CAD needs to be designed to help radiologists with decision
making.

The purpose of this study was to investigate a novel way of using CAD algorithms.
In the traditional prompting approach86,87, CAD results are displayed after the read-
ing is completed, offering the reader a possibility to check if no perceptual failures oc-
curred related to search. In current practice, readers are strongly discouraged to down-
grade their findings on the basis of CAD. Compared with the traditional approach, we
investigated a method in which CAD marks are only displayed on request during the
reading. This novel approach means that when the reader is inspecting a certain region
in a mammogram, that particular region can be probed for the presence of any CAD
information using a pointer and, if present, only the CAD information about this loca-
tion is shown. In addition to the CAD mark also the level of suspicion computed by
the CAD system is displayed. However image regions deemed normal by the reader
are not probed for CAD and thus no other CAD marks elsewhere on the image would
be shown. Obviously, this approach will not aid in avoiding perceptual oversights.
However, this method has the potential to aid readers in making decisions when they
inspect potential lesions, without being distracted by false-positives of CAD.

Our study was motivated by previous research, which demonstrated a significant
improvement in detection performance when CAD mass marks were independently
combined with reader scores83. In that study, CAD marks on regions not reported
by the reader were not used, which is similar to the approach investigated here. As
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Figure 6.1: The graphical user interface of the CAD workstation used in the observer exper-
iments. The upper row shows prior mammograms and the lower row displays the current
screening mammograms that have to be reported. In the case shown here, a reader reported
a localized finding in both projections and is asked to assign a malignancy score between 0 and
100 to that finding. In the craniocaudal (CC) view, a CAD region was present at the reported
location.

independent combination of reader results with CAD would not be easily accepted
in clinical practice, we designed a screening workstation in which readers themselves
can combine their interpretation with CAD in an interactive way. To investigate the
proposed CAD concept, we conducted a reader study in which 9 readers participated.

6.2 Materials and methods

The institutional review board approved this retrospective study and waived informed
consent. For the purpose of this study, a dedicated mammographic workstation was
developed that has the basic functionality that screening radiologists expect when they
read digital mammograms on electronic displays, including dedicated hanging proto-
cols, zooming, image manipulation, and local contrast enhancement tools. Brightness
and contrast were easily adjustable and were set in advance for optimal efficiency. The
workstation was equipped with a 30 inch color LCD panel (model FlexScan SX3031W;
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Eizo Nanao Technologies Inc., Hakui, Ishikawa, Japan) with a native resolution of 2560
× 1600. CAD processing is performed on a separate server and results are submitted
to the workstation with the image data before a reading session starts. CAD results
were obtained from the R2 ImageChecker v8.0 (Hologic, Bedford, MA, USA).

On the workstation (Figure 6.1) the presence of CAD marks can be queried inter-
actively by clicking on suspect regions in the mammogram using a pointing device by
the readers. It is not possible to display all available CAD marks at once as in tradi-
tional CAD prompting devices. For each queried location, the workstation checks if
a CAD mark is available at that location. If a CAD mark is available, it is presented
to the reader by displaying the contour of the region detected by CAD along with a
computer-estimated malignancy score. The contour of the region is colored based on
the malignancy score using a continuous color scale ranging from red to yellow, for re-
spectively high to low malignancy ratings. Previous studies show that giving readers
additional information on the likelihood of CAD marks might be helpful in decision
making195–198.

The average number of CAD regions that could be activated was adjustable. Only
CAD regions with malignancy ratings exceeding some threshold were included. In
the observer study, we adjusted this threshold such that in normal cases the average
number of false-positive regions was two per image.

6.2.1 Image database

A total of 120 screening mammograms were selected from the Dutch Breast Cancer
Screening program and were digitized using a laser digitizer suitable for medical ap-
plications (Lumiscan 85, Lumisys, Sunnyvale, CA, USA) at a pixel resolution of 50 m.
The mammograms were averaged down to a resolution of 100 m, maintaining a gray
level resolution of 12 bits. From these cases, 40 had a biopsy proven malignant mass,
and 80 were cancer-free. Due to the Dutch screening protocol, the majority of the cases
had only MLO views available. Of the 120 cases only 25 had additional CC views.
All cancer cases selected were subtle cancers that were missed at the original screen-
ing and were retrospectively identified as visible. We chose to use cases with missed
cancers to maximize the power of our observer experiment. Cases with only microcal-
cifications were excluded. Each mammogram was presented with the corresponding
prior screening mammogram, as is common in screening practice to allow detection of
temporal changes. In Table 6.1 the study is summarized.
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Table 6.1: Study overview

Total cases 120
Normal cases 80
Cancer cases 40
Cancer cases detected by CADa 33

Available CAD regionsb 587
Available true-positive CAD regions 41
Available false-positive CAD regions 546

a Cancers hit in at least one view by the CAD system at an
operating level of 2.0 false-positive markings per image

b Regions that could be queried at the operating level of 2.0
false-positives markings per image

6.2.2 Observer study design

Nine readers, of which four were certified screening radiologists and five were non-
radiologists with mammogram reading skills, participated in the study. Before the
actual observer study, sixty training cases were presented to the non-radiologists. The
expert radiologists were presented with fewer training cases due to time constraints.
The number of training cases presented to the radiologists ranged from 10 to 30. The
training cases served to familiarize the observers with the system, including the report-
ing functionalities, the interactive CAD functionality, and the controls for adjusting the
brightness and contrast.

The observers read the case set in two batches of 60 cases each. Each batch consisted
of two sessions. In the first session, 30 mammograms were read with CAD and 30
without. In the second session, CAD was made available for the cases initially read
without CAD and vice versa. Each session had a balanced mix of normal and abnormal
cases. The order of the cases within each subset was randomized in the two sessions
to minimize reading order effects.

The observers were instructed to search for malignant masses and architectural dis-
tortions only, and were informed that the study set did not contain microcalcification
cases. They were also informed what the approximate proportion of the abnormal
cases was. To report abnormalities, readers were asked to mark the finding in the
MLO and CC view, and assign a malignancy score on a continuous scale ranging from
0 to 100. Readers were also instructed to mark at least one finding per case, unless
a case was so obviously normal that no reasonable finding could be marked. In the
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with-CAD session, the readers could query the CAD system by clicking on regions in
the mammogram that they were inspecting. Otherwise the reading and reporting was
the same as in the non-CAD sessions. They were free to report any finding, regardless
if it was marked by CAD or not. There was no limit on the reading time.

6.2.3 Independent combination of readers and CAD

In a previous study the potential contribution of CAD in improvement of mammo-
graphic interpretation was investigated by independently combining findings of the
readers with detection results of the CAD software83. We applied the same method to
the experimental data obtained in this study. In that way we could compare the effect
of interactive use of CAD during reading with the effect of combining reader reports
with CAD independently after the reading is completed. In summary, independent
combination was implemented as follows: Only locations in the mammogram that the
observers reported were considered. For every finding it was checked whether the lo-
cation of the finding was marked by CAD and its level of malignancy was determined.
If two views were available and the finding was marked in both views, the highest
level of malignancy assigned to either of the CAD regions was taken. If the finding
was not marked at all by CAD a zero level was assigned. The combined malignancy
score of a finding was computed by taking a weighted average of the reader score with
the CAD estimated malignancy score.

6.2.4 Statistical analysis

We used localization receiver operating characteristic (LROC) to analyze the data for
differences in reader performance between reading with and without using interactive
CAD, for individual readers, as well as for the average reader. To determine a LROC,
the decision threshold is varied and the correct localization fraction is plotted as a func-
tion of the false-positive fraction. The false-positive fraction is defined as the fraction
of normal cases recalled as a function of the decision threshold.

For every reader, we determined the cut-off point at which the false positive recall
rate was 10%, by thresholding the scores the observer had given to the findings. The
primary metric of detection performance was the mean correct localization fraction in
the false-positive fraction interval ranging from 0 to 0.1. This interval is chosen because
in screening programs radiologists usually have recall rates below 10 percent.

The location of each finding was indicated in the MLO view and CC view. A find-
ing was considered a true-positive (TP), if it had a correct location in at least one of
the views. We defined a location to be correct if the distance between the observers’
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marked location and the true cancer location was less than 2 cm. The false-positive
fraction was estimated from the observers’ marked locations in the normal cases. We
computed significance of differences between sessions with and without CAD for the
average reader using the Wilcoxon signed rank test. Differences with a P value of less
than .05 were considered significant. The statistical analysis was performed by using R
data analysis software (version 2.9.0; R Foundation for Statistical Computing, Vienna,
Austria). The number of times reported and unreported TP and FP CAD regions were
queried was computed for every reader. A CAD region was considered queried if the
distance between the observers’ query location and the centre point of the CAD region
was less than 0.5 cm, or if the query location was within the CAD region.

6.2.5 Reading times

Reading times per case were automatically recorded in the reading sessions. Mean
reading time per case and its standard deviation was computed for every reader in
both reading modes. Reading times exceeding 5 minutes were excluded from the anal-
yses on the basis of the assumption that these excessively long reading times were the
result of interruptions during the session. As a result, approximately 3% of all cases
were excluded from the time analysis. Average reading times for the unaided session
and the session with CAD were calculated. Paired reading times were compared with
Wilcoxon signed rank testing. A P value of less than .05 was considered to indicate a
statistically significant difference.

6.3 Results

The results of the nine individual readers are shown in Table 6.2. It also shows results
obtained by independently combining reader scores with CAD. The mean correct lo-
calization fraction of a reader in the false-positive fraction interval ranging from 0 to 0.1
is used as the performance measure. Results show that radiologists did not perform
better in this study than the non-radiologists. We computed average LROC curves
from all the readers, the non-radiologists, and the radiologists. These are shown in
Figure 6.2, 6.3 and 6.4, respectively.

The performance of the average reader increased with CAD at low false-positive
rates from 25.1% to 34.8%. Every reader improved their performance using CAD with
the exception of reader 8. The difference between reading with and without CAD for
the average reader, measured by the performance metric defined above, was statisti-
cally significant (p = 0.012). Results confirm that performance may also be increased
by independent combination with CAD scores, with a smaller increase, however, than
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Table 6.2: Reader detection performance in the false-positive fraction interval ranging from 0 to
0.1

Without CAD With CAD Independent
TPF10 (%) TPF10 (%) combination

TPF10 (%)

Non-radiologists
1 41.1 51.3 43.3
2 35.3 51.5 41.7
3 16.0 25.9 26.3
4 15.4 25.2 27.4
5 18.3 41.9 26.7
Average 25.2 39.2 33.0

Radiologists
6 24.3 32.3 33.6
7 24.8 28.8 30.2
8 30.2 25.7 37.0
9 20.2 30.4 30.0
Average 24.9 29.3 32.7

Reader average 25.1 34.8 32.9
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Figure 6.2: Average LROC curves obtained from the nine readers for the detection of cancers
with and without using CAD. The false-positive fraction interval ranging from 0 to 0.1, where
the mean correct localization fraction is computed, is highlighted in light gray.
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Figure 6.3: Average LROC curves obtained from the five non-radiologists.
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Figure 6.4: Average LROC curves obtained from the four radiologists.

obtained with interactive use of CAD. The difference we found between interactive use
of CAD and independent combination is not statistically significant.

As an example, a mammogram of a woman with an invasive ductal carcinoma are
shown in Figure 6.5. In this case, 7 of the 9 readers correctly localized the cancer in
both sessions, but rated their finding substantially more suspicious in the session with
interactive CAD enabled, one reader only located the cancer correctly in the session
where CAD was enabled, and one reader did assign a slightly lower rating to the cancer
in the session with CAD. In Figure 6.6, the same case is shown with the activated CAD
region. The average time to read a case without CAD was 84.7 seconds ± 61.5. The
radiologists read the cases much faster than the non-radiologists. Average reading
time in the session with CAD was 85.9 seconds ± 57.8 per case (Table 6.3). There were
no significant differences in reading times for the session with CAD and the session
without CAD (p = 0.13) (Table 6.3). The CAD system had a lesion-based sensitivity of
80.4% (41/51) at the operating level of 2.0 false-positive markings per image used in the
study. The number of available CAD regions was 587. Table 6.4 shows that on average
274.2 of the 546 false-positive CAD regions (50.2%) were not queried. It also shows
that on average 5 of the 41 true-positive CAD regions (12.2%) were not queried. The
radiologists queried far fewer false-positive CAD regions than the non-radiologists.
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Figure 6.5: Mediolateral oblique mammographic views of a woman with an invasive ductal
carcinoma indicated by the arrow. Seven of the nine readers correctly localized the cancer in
both sessions, but rated their finding substantially more suspicious in the session with interac-
tive CAD enabled, one reader only located the cancer correctly in the session where CAD was
enabled, and one reader did assign a slightly lower rating to the cancer in the session with CAD.
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Table 6.3: Mammogram reading times

Average reading time per case (s)
Without CAD With CAD P value

Non-radiologists
1 83.6± 47.0 111.5± 70.3 0.001

2 84.3± 59.2 67.7± 42.1 0.03

3 131.1± 65.1 129.5± 56.9 0.51

4 158.8± 68.1 146.0± 62.3 0.23

5 33.4± 29.6 35.2± 29.0 0.45

Average 97.0± 70.0 96.7± 67.4 0.97

Radiologists
6 63.1± 45.6 58.9± 37.8 0.57

7 57.8± 31.7 70.8± 44.6 0.002

8 73.1± 44.1 73.1± 31.4 0.42

9 86.7± 52.1 88.6± 39.1 0.12

Average 70.0± 45.1 72.8± 39.8 0.02

Reader average 84.7± 61.5 85.9± 57.8 0.13

Figure 6.6: The same case as in Figure 6.5 with the activated CAD region. The red contour and a
CAD score close to zero indicate a high probability that this is a cancer.
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Table 6.4: Number of CAD regions querieda

Queried CAD Non-queried FP Non-queried, Non-queried CAD regions
regions CAD regions unreported regions but reported

TP CAD regions TP finding

Non-radiologists
1 290 293 2 2
2 338 244 3 2
3 330 251 4 2
4 500 83 3 1
5 196 377 7 7
Average 330.8 249.6 3.8 2.8

Radiologists
6 176 396 8 7
7 262 319 6 0
8 209 365 9 4
9 444 140 3 0
Average 272.75 305 6.5 2.75

Reader average 305 274.22 5 2.78

a There were 587 CAD regions in total; 546 false-positive CAD regions and 41 true-positive CAD re-
gions

6.4 Discussion

Results of this study show that readers are able to improve detection performance
when they use CAD for interpretation of mass lesions in an interactive way. The
beneficial effect of CAD can be attributed fully to improvement of interpretation, be-
cause traditional CAD prompts to avoid perceptual oversights were not shown. The
effectiveness was remarkable given that the readers in this study used the interactive
system for the first time and had limited training. It is noted that in a previous exper-
iment using a similar observer study design and data set no significant improvement
with traditional CAD prompting was found when readers had limited training199. This
suggest that for mass detection interactive CAD may be more effective than traditional
CAD. This is in accordance with studies suggesting that interpretation errors are more
common than perception errors5,83. Results obtained in this study show that read-
ers are able to exploit the predictive power of CAD to improve their decisions. This
may come as a surprise, because due to the large number of false-positives it is often
believed that the performance of CAD for masses is much less than that of an expe-
rienced reader. It is noted, however, that in a previous study it was shown that the
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performance of the CAD system was comparable to that of experienced readers when
analysis was restricted to locations identified by the radiologists85. This is what counts
in this study, because CAD results were only shown on regions probed by the read-
ers. Interestingly, malignancy ratings of CAD were also used previously in the large
CADET II trial66 conducted in the UK, where the size of the CAD marks was used to
represent the computed likelihood of cancer. Positive results of this trial could also be
related to using CAD as decision support. The potential gain of using CAD for deci-
sion making was also demonstrated in a previous study, in which CAD information
was independently combined with reader scores83. Results in this study confirm that
by independent combination of reader scores with CAD performance can be improved
(Table 6.2). On average, we found that the improvement in performance was larger
when readers used CAD themselves than when CAD was independently combined
with their scores. However, the difference was not significant. Interestingly, for one of
the radiologists (number 8) detection performance decreased when using interactive
CAD, whereas performance increased with independent combination. This may well
be due to insufficient training. Readers need to learn how to weight CAD information
in their decisions.

Table 6.3 shows the average reading times per reader for the sessions with and
without CAD. We found that for the non-radiologists the average reading time was
slightly reduced when they used CAD. For the radiologists the reading time increased
less than three seconds on average with CAD. It seems that interactive use of CAD
does not cost much extra time, because the information is presented at the moment the
reader asks for it.

In the experiments we used a threshold to adjust the average number of CAD re-
gions per image that could be activated. On average, there were two false-positives per
normal image. In clinical practice the operating point of prompting systems for masses
in mammography are often set to a level near 0.5 false-positives per image. We used
more regions, because it was thought that in the interactive system more false-positives
would be tolerable. Many of them are never activated, and if they are activated they
are perceived very differently than traditional prompts. The radiologists queried far
fewer false-positive CAD regions than the non-radiologists which may indicate they
are more confident in their reading.

Interactive CAD is intended to aid the reader in decision making and will not help
to avoid perceptual oversights. The success of the interactive approach may be ex-
plained by assuming that perceptual oversights do not occur frequently. In our study
this appeared to be the case. On average only 5 (12.2%) of the true-positive CAD re-
gions were not probed by the reader. Thus, in the reader study at most 12.2% of the
cancers were overlooked, while none of them were reported in the original screening.
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Results also show that on average 274.2 (50.2%) false-positive CAD regions were not
activated, limiting the number of false-positives to which the readers are exposed. It
is noted that the system can easily be extended by displaying the most suspicious,
non-queried CAD regions as traditional prompts after the reading is completed.

In general, the response of the radiologists to the interactive CAD system was very
positive and they preferred it to conventional CAD prompting systems. An advantage
of the proposed system is that obvious false-positives of the CAD system are rarely
shown, as the readers do not probe these regions. This may increase confidence in
CAD.

In our study the reading conditions were less optimal than in screening practice,
because a 4-megapixel color display was, instead of two 5-megapixel grayscale mon-
itors commonly used in mammography. This might have a negative effect on the de-
tection performance, especially for detecting microcalcifications. As microcalcification
cases were not included in our study we do not believe that image quality influenced
our study outcome. This is supported by a study from Kamitani et. al.200 in which
no significant differences were found between the observer performances for detect-
ing breast cancer masses when performing soft-copy reading on 3-megapixel or 5-
megapixel LCD monitors. Another limitation of our study is the absence of CC views
in most cases. In the Dutch screening program, two-view mammography is not always
performed at subsequent screens. Obviously, absence of additional CC views might af-
fect the radiologists’ detection performance. However, readers in our study are used
to interpreting single view mammography. We would like to note that both limitations
did not affect the difference in detection performance described in this paper, because
the conditions were similar in the sessions with CAD and the sessions without CAD.

Participants in this study were not reading under normal screening conditions. It
may be that their alertness, concentration and decision thresholds were affected by the
knowledge that this study was a controlled laboratory experiment in which their deci-
sions would be recorded and used in a study, and that the balance between cancer and
normal cases was artificial. Because their assessments of the mammographic cases in
this retrospective observer study would not affect patient care, their decisions could be
different from that in an actual clinical setting. This effect has been described, among
others, by Gur et.al.201. However, the reading conditions in the with-CAD and without-
CAD were similar, and therefore the observed effect on detection performance can be
attributed solely to the use of the interactive CAD system. Because we performed
LROC analysis, decision thresholds did not affect study results.

As in many other studies, the sample was heavily weighted towards cancer cases.
Not doing so would make this form of research extremely expensive. The effect on
sensitivity and recall rates of radiologists using this interactive CAD system for real

106



6.5 Conclusions

life screening, can only be determined by a large randomized controlled trial in which
radiologists use this system during routine use and for a substantial period86. Never-
theless, a laboratory study is generally a first step to demonstrate the usefulness of a
CAD concept before a large trial is performed.

The readers participating in this study had different backgrounds and experience.
We expect that when readers gain more experience with the system they will learn
how optimize use of it. In addition, readers need to find out how to weight CAD
information in their decisions, and we expect them to improve this when they gain
more understanding of the strengths and weaknesses of the CAD software.

6.5 Conclusions

We found that in addition to using CAD in the traditional way to avoid perception
errors, there is a large potential for using CAD as a decision aid to reduce interpretation
failures. Results suggest that interactive CAD may be more effective than traditional
CAD for improving mass detection without affecting reading time.
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Interactive decision support versus prompting in mammography

Abstract

Purpose: To compare effectiveness of an interactive computer-aided detection (CAD)
system, in which CAD marks remain hidden unless their location is queried by the
reader and in which CAD marks are displayed with a suspiciousness score, to the effect
of CAD prompts as used currently in clinical practice for the detection of malignant
masses in mammograms.

Materials and methods: An observer study was conducted in which six certified screen-
ing radiologists and 3 residents read 200 cases (63 with a screen-detected malignant
mass, 17 with a malignant mass missed in screening, 20 false positives from screen-
ing, and 100 normals) in two sessions. In each session, half of the cases were first read
without CAD and subsequently with CAD prompts, while the other half of the cases
were read with the interactive CAD system. Findings reported by the readers included
location and a suspiciousness rating. For each reading mode, location receiver operat-
ing characteristic (LROC) curves were computed. Partial area under the LROC in an
interval of low false-positive fractions (0 to 0.17, based on the observed false-positive
rate) was used as a measure of reader performance. Differences in reader performance
were analyzed using the Wilcoxon signed-rank test and the DBM-MRMC method.

Results: Reader sensitivity increased significantly (p < 0.01) when interactive CAD was
used (58.5%) compared to both reading without CAD (51.2%) and reading with CAD
prompts (51.1%). No significant difference was found in the number of unreported ab-
normal cases when mammograms were read with interactive CAD compared to read-
ing with prompting CAD or to reading without CAD.

Conclusion: For detection of malignant masses in mammograms interactive use of CAD
results as decision support may be more effective than the current use of CAD aimed
at avoiding perceptual oversights.
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7.1 Introduction

7.1 Introduction

In breast cancer screening computer-aided detection (CAD) systems are used to avoid
perceptual oversight of abnormalities in mammograms. The positive effect of CAD has
been shown in several studies66,69,87,188 but there are also studies in which no perfor-
mance increase has been found71,86,189. For the detection of microcalcifications the per-
formance of current CAD systems is relatively high, which is appreciated by most read-
ers. However, there is less agreement about the benefit of using CAD for the detection
of masses and architectural distortions. Many radiologists argue that CAD shows too
many false-positive prompts to have a positive effect on mass detection190,191. On the
other hand, it has been shown that masses are often missed due to incorrect interpre-
tation84,202 and that reader performance can be improved by retrospectively combin-
ing reader scores with the presence and probability of CAD mass markers83,85. These
results motivated us to develop a CAD system aimed at aiding radiologists with in-
terpretation of suspicious regions detected by themselves. In this interactive system,
CAD marks are only displayed for queried regions and are accompanied by a suspi-
ciousness score. In a recent study interactive use of CAD for detection of masses in
mammograms was found to be effective88. In that study a commercial CAD system
and a database of digitized film mammograms were used. The purpose of this study
is to compare the effect of an improved interactive CAD system to the effect of tradi-
tional CAD prompts in a reader study. The study is carried out with full field digital
mammograms (FFDM) randomly collected from a screening program.

7.2 Materials and methods

7.2.1 Study population

In this retrospective study all material was anonymized. Institutional review board
approval was waived. All mammograms used in this study were acquired in a digital
screening pilot project conducted in the period 2003-2008 at the Preventicon screening
centre in Utrecht, the Netherlands203.Women whose mammograms were included in
the study completed a questionnaire at screening, in which they granted permission to
use their mammograms for quality control and scientific and educational purposes. In
the screening program, women in the age group 50-74 are invited to participate every
two years. Processed digital mammograms were acquired with a Selenia FFDM sys-
tem (Hologic, Danbury, CT). As common in the Netherlands, MLO and CC views are
obtained at the initial screening, while on the subsequent only MLO views are made,
unless there is an indication that obtaining the second view would be beneficial. All
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mammograms were read independently by two radiologists, with referral based on
consensus. For subsequent screenings, digitized prior film mammograms were avail-
able of the exam preceding the first digital screening exam.

7.2.2 Case selection

In the pilot project phase there were 1239 FFDM based referrals in which 202 cancers
were detected with a mass or architectural distortion as the dominant sign of abnor-
mality. All mammograms with abnormalities used in this study were annotated under
supervision of an experienced reader who did not participate as reader in the observer
study. These annotations were used as reference standard for validation of the reader
scores. When a lesion was annotated, it was also assigned a subtlety score in the range
1 (obvious) - 5 (hardly visible). For the experiment 80 positive and 120 negative cases
were selected from this series as described below. To make the study more represen-
tative for international standards we only selected cases in which both CC and MLO
views were available. Cases in which the lesion was rated as obvious lesions (subtlety
score of 1) and microcalcification cases were excluded. First we checked for digital
screening mammograms acquired prior to detection in which the lesion was already
visible. This yielded a total of 17 mammograms. From the remaining cases we ran-
domly selected 63 mammograms from incident screening rounds with a detected can-
cer. For the negative cases, to make the set more challenging we included 20 false
positive referrals. Cases were selected in which the radiologist reported a suspicious
mass or architectural distortion but no malignancy was found, further examination did
not include biopsies, and at least one negative follow-up screening mammogram was
obtained. Obvious benign abnormalities were excluded. The remaining 100 negative
mammograms were randomly selected from the non-referred digital mammograms in
the pilot project and had at least one normal follow-up exam. We took care that the
proportion of initial screenings was the same for positive (4 out of 80) and negative (6
out of 120) cases.

7.2.3 CAD and reading environment

The CAD system we developed for use in this study204 was designed to detect malig-
nant masses and architectural distortions and was trained on a large set of digitized
film mammograms (11793 images containing 1853 malignant mass regions). Using a
dedicated pre-processing module this system can be used for detection of abnormal-
ities in FFDM cases205. The system detects suspicious locations in each mammogram
and computes a contour for each location using an automatic segmentation proce-
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dure148. For each detected region a suspiciousness score is computed based on fea-
tures like spiculation, local contrast, size and shape. A special feature of the CAD
system is that detected regions in the MLO and CC views of the same breast are au-
tomatically linked if they were classified as corresponding lesions based on similarity
and location51,79,204. Like in other recent developed CAD algorithms52,176,206 this link-
ing information is used when computing the suspiciousness score for a region. In our
CAD system the linking information is also used when the CAD results are displayed.
Comparison with prior mammograms was not included in the CAD algorithm.

The reader study was performed using an in-house developed experimental read-
ing environment for screening mammography88, which includes hanging protocols for
navigation between views and comparison of current and prior mammograms. Images
were displayed using a 30-inch dicom calibrated color LCD panel (model FlexScan
SX3031W; Eizo Nanao Technologies Inc., Hakui, Ishikawa, Japan) with a native reso-
lution of 2,560 × 1,600. Actions of the readers are logged by the system to facilitate
detailed analysis of the sessions.

CAD results could be viewed in two different modes: the traditional prompting
mode and the interactive mode. In the prompting mode, once activated all CAD
regions are shown by displaying their contours, without providing a suspiciousness
score. To limit the number of false-positives, only prompts are shown for CAD regions
with a suspiciousness score above a threshold. This threshold is computed on a sep-
arated data set in order to display on average 2 prompts in a normal case (4 images).
This prompting mode with the threshold we used is similar to use of CAD in current
clinical practice.

In the interactive mode, each single CAD mark remains hidden until activated. A
reader can activate a CAD mark by clicking with the computer mouse on a mammo-
graphic region. If a CAD result is available at the queried location, the contour of this
region is presented to the reader with its suspiciousness score. A CAD result is consid-
ered available if the queried location is inside the contour of the CAD region or if the
distance between the queried location and the center point of the CAD region is less
than 0.5 cm. Also view correspondence is used: if an activated CAD region is linked to
a region in the other view, for this other region the contour and score are also shown.

To display a CAD result, the suspiciousness score computed for the region should
be above a threshold. This threshold is chosen in such a way that on average 8 CAD
regions are available in a normal case (4 images). More CAD results are made accessi-
ble in this way than in the prompting mode, but they are only shown when activated.
The contour of the region is displayed in color using a continuous scale from yellow
(less suspicious) to red (highly suspicious). A numeric value representing suspicious-
ness is also shown next to the contour, after converting the CAD output to a scale of 0
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(not suspicious) to 100 (very suspicious). This conversion is done with a lookup table
which matches the CAD output with reader scores obtained in a former experiment88,
in which a different dataset was used.

7.2.4 Observer study design

Nine readers, of which six were certified screening radiologists and three were res-
idents, participated in the study. Before starting the study the readers were trained
with a short training session to become familiarized with the interface of the system,
and with the CAD result presentation. This was done by presenting a set of 20 training
mammograms to be read with prompting CAD and a set of 20 training mammograms
to be read with interactive CAD. The readers were informed that the study set did
not contain microcalcification cases. They were also informed about the approximate
proportion of the abnormal cases.

In the actual observer study, each reader read all cases in both modes in two ses-
sions. In the first session 100 cases were read in the first mode (prompting CAD or
interactive CAD) and subsequently the other 100 cases were read in the other mode.
The second session was at least 4 weeks after completing the first session. The cases
that were read with prompting CAD in the first session were read with interactive CAD
in the second session, and the other way around. Five of the readers used prompting
CAD first, the others used interactive CAD first.

To obtain sufficient data for analysis, radiologists were asked to report more find-
ings than they would normally do in their screening practice. This means that they also
had to score regions they would normally not refer. They were instructed that an aver-
age of about one finding per mammogram would be a good response. A finding was
reported by moving a mass icon to a suspicious location. Each finding was numbered.
If a finding was visible in both views, radiologists were asked to report the finding
by moving two mass icons with the same index number to both locations. Readers
assigned a suspiciousness score in the range 0-100 to each finding using a slider. For
each case the readers also indicated if they would refer the case or not.

In the prompting CAD mode, prompts were initially not displayed. The radi-
ologist was forced to score the case first without any help of CAD. Subsequently,
CAD prompts were displayed and the radiologist was able to add or remove find-
ings, change scores, or alter the referral decision. In this way, the effect of traditional
prompting could be compared to reading without CAD.
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7.2.5 Data analysis

From the collected observer data location receiver operating characteristic (LROC)
curves were computed. Sensitivity was computed as the fraction of abnormal cases
in which the reader had reported the mass or architectural distortion at the correct lo-
cation in at least one of the views. The location of a finding was considered correct if
its distance to the center of the reference standard was less than 2 cm. If a malignant le-
sion was reported with multiple findings, the finding with the highest score was used.
For one case two malignant masses were present. The correct localized finding with
the highest score was used for this case. The false-positive fraction was based on the
findings with the highest reader score in each normal case. For each LROC curve, the
mean true-positive fraction (MTPF) in a false-positive fraction interval ranging from 0
to 0.17 was computed. An interval containing low false-positive fractions was chosen
because in screening the operating point at which radiologists work is at a low false-
positive fraction. The choice of the interval was based on the fact that in this study 17%
of the normal cases (20 of a total of 120) were false-positives in the original screening.

To compare the mean sensitivity in the defined false-positive fraction interval for
different modes, significance tests were performed using the Wilcoxon signed-rank
test. For this test the paired MTPF values for each reader were used. The Wilcoxon
signed-rank test treats only readers as a random sample. At the moment there is no
good significance test available to compare different values for MTPF in which both
readers and data are treated as random samples. The JAFROC method207 does only
compute the area under the whole LROC curve, while in screening only the sensitivity
at low false-positive fractions matters. The DBM MRMC method208 treats both readers
and data as random samples. Although this method does not take into account the
location of findings we also performed this test.

We investigated the influence of CAD on the number of cancers that were not re-
ported. This was done by counting the cases for which the reader did not mark the
abnormality in any of the views. To compare this number for the different modes,
significance tests were performed using the Wilcoxon signed-rank test.

In the interactive mode the average number of clicks with and without CAD re-
sponse was computed. Clicks were only counted in normal cases, excluding the re-
ferrals, because in screening most cases are normal. Reading times were analyzed by
computing the median reading time for the normal cases (not the cases false-positively
referred in screening) for each reader. Median reading times were computed instead
of average reading times because the average value was affected by some excessively
long reading times caused by interruptions during the session.
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7.3 Results

With the prompting mode threshold the sensitivity of CAD was 84% (67 of 80 cases
detected), with on average 3.2 false-positive findings per normal case. When the in-
teractive mode threshold was used the sensitivity was 91% (73 of 80 cases) with on
average 8.2 false-positive findings per normal case. In the prompting mode, true-
positive prompts were displayed on average in 10.7 of the abnormal cases that were
not reported when reading without CAD. In the interactive mode, true-positive CAD
regions were available for on average 12.3 cases that were not detected by the reader
without CAD, slightly more because of the lower threshold. On average the readers re-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

T
ru

e-
p

o
si

ti
v

e 
fr

ac
ti

o
n

False-positive fraction

without CAD
prompting 
interactive 

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

T
ru

e-
p

o
si

ti
v

e 
fr

ac
ti

o
n

False-positive fraction

without CAD
prompting 
interactive 

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

T
ru

e-
p

o
si

ti
v

e 
fr

ac
ti

o
n

False-positive fraction

without CAD
prompting 
interactive 

(c)

Figure 7.1: Location receiver operating characteristic (LROC) curves for reading without CAD,
with prompting CAD and with interactive CAD. The curves are averaged over all 9 readers (a),
the 6 certified screening radiologists (b) and the 3 residents (c).

ferred 17% of the normal cases in the mode without CAD. Figure 7.1a shows the LROC
curves for the three modes (without CAD, prompting CAD and interactive CAD) aver-
aged over the readers. For the whole interval of false-positive fractions, the sensitivity
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obtained in the interactive CAD mode is higher than in the other modes. The LROC
curves based on the results for respectively the 6 certified mammographers and the
3 residents are depicted in figure 7.1b and 7.1c. For most false-positive fractions, the
effect of interactive CAD is higher for the residents than for the certified radiologists.
The mean true positive fraction (MTPF) in the false-positive fraction interval from 0
to 0.17 is listed for each reader in table 7.1. For the mode without CAD the MTPF is
given, for the other modes the increase in MTPF is given compared to the mode with-
out CAD. For almost all readers the use of interactive CAD yielded a higher MTPF
than the mode without CAD. On average the mean sensitivity increased from 0.512
(without CAD) to 0.585 (interactive CAD). This difference was significant (p = 0.009

for the Wilcoxon signed-rank test and p = 0.003 for the DBM MRMC method). When
comparing interactive CAD to prompting CAD (average MTPF of 0.511), the increase
was also significant (p = 0.002 for the Wilcoxon signed-rank test and p = 0.003 for the
DBM MRMC method). For one of the certified screening radiologists the MTPF was
slightly lower when interactive CAD was used compared to reading without CAD.
This was the reader that achieved the highest MTPF in the mode without CAD.

All abnormalities were correctly localized by at least one reader in the mode with-
out CAD. The number of unreported abnormal cases is listed in table 7.2 for each reader
and each mode. For most readers (6 out of 9) the number unreported abnormal cases
decreased when prompting CAD was used, for the other 3 no difference was found. On
average the difference in unreported abnormal cases was 1.33 (significant, p = 0.019)
for the prompting mode compared to reading without CAD. For the interactive mode
the number of unreported abnormal cases increased for 4 radiologists (ranging from
1 to 2 cases) and decreased for 4 radiologists (ranging from 2 to 12 cases) compared
to reading without CAD. Overall, disregarding the observer ratings, no significant dif-
ference in the number of unreported abnormal cases was found when reading with
interactive CAD was compared to reading with prompting CAD or to reading without
CAD.

The average number of clicks, in the interactive sessions, per normal case with and
without CAD response is listed in table 7.3. There is a large variance in the number
of times the readers queried CAD, which ranged between 0.3 and 13.1 per case. For
each reader at least half of the clicks did not activate any CAD region. The median
reading time per case for each reader is given in table 7.4. On average, the reading
time increased by approximately 10 seconds when using prompting CAD or interactive
CAD.
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Table 7.1: Mean true-positive fraction (MTPF) in the false-positive fraction interval 0-0.17. For
the mode without CAD the MTPF is given, for the other modes the increase in MTPF is given
compared to the mode without CAD

Without CAD Prompting
vs.
without
CAD

Interactive vs.
without CAD

Mammographers
reader 1 0.491 +0.006 +0.046

reader 2 0.515 +0.017 +0.117

reader 3 0.677 −0.026 −0.018

reader 4 0.539 −0.017 +0.036

reader 5 0.503 −0.006 +0.071

reader 6 0.520 +0.012 +0.117

average 0.541 −0.002 +0.062

Residents
reader 7 0.440 +0.009 +0.169

reader 8 0.399 −0.001 +0.117

reader 9 0.528 +0.001 +0.004

average 0.456 +0.003 +0.097

reader average 0.512 −0.001 +0.073
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Table 7.2: Number of unreported abnormal cases. In parentheses the increase is given compared
to the mode without CAD

Without CAD Prompting Interactive

Mammographers
reader 1 13 11(-2) 14(+ 1)

reader 2 9 8(-1) 11(+ 2)

reader 3 10 10( 0) 11(+ 1)

reader 4 12 11(-1) 13(+ 1)

reader 5 22 22( 0) 22( 0)

reader 6 24 23(-1) 12(-12)

average 15.0 14.2 13.8

Residents
reader 7 23 17(-6) 14(- 9)

reader 8 17 17( 0) 14(- 3)

reader 9 13 12(-1) 11(- 2)

average 17.7 15.3 13.0

reader average 15.9 14.6 13.6

7.4 Discussion

We found that reader performance for the detection of malignant masses and architec-
tural distortions increased when CAD results were interactively displayed compared
to regular prompting or reading without CAD. Readers also preferred the interactive
system. This can be explained as follows. In the interactive mode marks remain hid-
den unless corresponding regions are probed. As most radiologists only probe a lim-
ited number of regions, and only those they are interested in, less false-positives are
displayed. Because display is initiated by the reader CAD does not disrupt the read-
ing process. CAD suspiciousness scores are used to aid with interpretation and may
change the initial opinion of the reader. As the interpretation of the reader and the
CAD ratings are correlated the readers gain more confidence in CAD than with the use
of prompts.

More CAD marks were available in interactive reading mode. Therefore, findings
with a relatively low suspiciousness score could be activated that were not displayed in
the prompting mode. In this way, the readers could use CAD as interpretation support
for subtle lesions for which they were not sure whether to recall or not. Generally,
regions marked by CAD with low suspiciousness can support readers in their decisions
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Table 7.3: Number of clicks per normal case with and without CAD response

With CAD Without CAD Total
response response

Mammographers
reader 1 1.7 3.0 4.7

reader 2 2.2 3.8 6.0

reader 3 4.0 9.1 13.1

reader 4 1.1 2.1 3.2

reader 5 1.1 1.3 2.4

reader 6 0.2 0.2 0.3

average 1.7 3.3 5.0

Residents
reader 7 0.6 0.9 1.5

reader 8 0.2 0.4 0.7

reader 9 2.1 6.1 8.2

average 1.0 2.5 3.5

reader average 1.5 3.0 4.5

not to recall. One of the advantages of the interactive system is that such CAD marks
are not experienced as false-positives by the readers in the interactive system, but they
rather strengthen the confidence of the readers in the system.

One might argue that a disadvantage of interactive CAD is that perception over-
sight errors are not avoided. We did not use eye-tracking methods in our study and
therefore we do not know which regions were inspected. However, no significant dif-
ference was found in number of unreported cancer cases when interactive CAD was
compared to prompting CAD. This suggests that oversight was not a major cause of
missing cancers in our study. The number of unreported cancer cases even decreased
for some readers in the interactive mode. This might be explained by the lower thresh-
old we used, due to which more CAD marks were available in interactive mode CAD,
which might have encouraged some radiologists to report more subtle abnormalities.
We also found that for three out of the four radiologists who reported less cancer cases
in the interactive mode, the mean sensitivity at low false-positive fractions increased.
This suggests that the influence of interactive CAD on the given reader scores had
more effect on reader performance than the increase of unreported cancers.

In our study we used a 4-megapixel color display. Although this display has less
spacial and gray value resolution than displays used in clinical practice, it is not ex-
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Table 7.4: Median reading time (sec./case). In parentheses the increase is given compared to the
mode without CAD

Without CAD Prompting Interactive

Mammographers
reader 1 29 40(+11) 27(- 2)

reader 2 56 68(+12) 75(+19)

reader 3 42 58(+16) 61(+19)

reader 4 52 63(+11) 67(+15)

reader 5 34 44(+10) 57(+23)

reader 6 30 35(+ 5) 34(+ 4)

average 41 51(+11) 54(+13)

Residents
reader 7 34 44(+10) 27(- 7)

reader 8 42 51(+ 9) 70(+28)

reader 9 51 59(+ 8) 41(-10)

average 42 51(+ 9) 46(+ 4)

reader average 41 51(+10) 51(+10)

pected that this will have influenced the detection of masses. A study from Kamitani
et al.200 showed no significant differences in observer performance for detection of
masses between the use of a 3- or a 5-megapixel monitor. We asked the readers their
opinion about the quality of the mammogram display and they responded that they
found that the quality was excellent for mass detection.

Regarding reading times, we found that the use of CAD (interactive or prompting)
lengthened the reading time by approximately 10 seconds. Due to the sequential scor-
ing of each case without CAD and with prompting CAD, the reading time for prompt-
ing CAD could only increase compared to the mode without CAD. In the interactive
mode, the variance in number of CAD queries was large between readers. Some read-
ers reported they spend more time exploring the CAD results in the interactive system
out of curiosity, which will have increased the reading time. Therefore, we expect that
over time reading time will be reduced. It is noted that in an earlier study we found
no increase in reading times with interactive CAD88.

In a retrospective study readers might perform differently compared to normal
screening201. Reasons might be that decisions do not affect patient care, there is a
competition element to perform better than colleagues, and readers know the dataset
contains more cancers than in screening practice. We compared results of this study
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to the performance obtained in the original screening for the set of cases we selected.
In the original screening, 79% of the abnormal cases in our dataset were detected (63
out of 80) at a false-positive rate of 17% (20 out of 120). Our results show an aver-
age sensitivity of 69% at a false-positive rate of 0.17 for certified radiologists reading
without CAD. These are single reader results while in original screening each case was
read by two radiologists with differences of opinion resolved in consensus. According
to a meta-analysis86, the cancer detection rate increases by approximately 10% when
mammograms are double read. Taking this into account, we expect that when double
reading would have been used in this study similar performance would have been ob-
tained as in the original screening. This indicates that the readers in the observer study
were not behaving different than in practice. Further, on average 17% of the negative
cases were referred by the readers in this study. This is similar to the percentage of
cases in our study set that were false-positively referred in screening.

In this study the effect of prompting CAD may be underestimated. Our results dif-
fer from results obtained in prospective studies in which prompting CAD had a posi-
tive effect on reader performance66,69,87,188. It might be that in a retrospective observer
study like ours less search errors are made and that therefore prompting CAD has less
effect. Nevertheless, in that case the fact that no difference was found between read-
ing without CAD and with prompting would be the result of a higher performance
for reading without CAD and not of a lower performance for reading with prompting.
Another reason might be that in the prompting mode the readers scored each case be-
fore and after the CAD prompts were displayed. Readers might be less inclined to act
on CAD prompts when a decision was already made without CAD.

It is a limitation of the study is that the size of the effect of interactive CAD we found
cannot be translated easily to screening practice. We selected a challenging set of cases
for this study, in which the proportions of normal and abnormal cases were different
than in screening practice. Microcalcification cases in which no mass or architectural
distortion was visible were excluded and normal cases were enriched with difficult
cases referred in the original screening. Reader performance is very dependent on the
subtlety of the cases in the study set. However, we used the same study set for each
mode and therefore we believe that the relative differences between reading without
CAD, with prompting, and with interactive CAD are valid.

In conclusion, for detection of malignant masses in mammograms the interactive
use of CAD results as decision support may be more effective than the current use of
CAD aimed at avoiding perceptual oversights.
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Computer-aided detection as a decision aid in chest radiography

Abstract

A method for presenting computer-aided detection results is proposed in which read-
ers probe image locations for decision support. This could be an alternative to the cur-
rent method of displaying CAD prompts. While not aimed at avoiding visual search
errors, the new approach has the advantage that false positives of CAD are not dis-
tracting the reader and that decision errors may be reduced. The aim of the study is to
investigate interactive CAD presentation in a lung nodule detection task, and to com-
pare its effect on readers to the effect of prompts. We used 223 chest radiographs from
the public JSRT database, including 130 cases with lung nodules. Six readers partic-
ipated in an observer study in which cases were interpreted unaided, with prompt-
ing CAD, and with interactive CAD. Readers reported locations of findings and rated
these on a continuous scale. For analysis localization receiver operating characteristic
(LROC) was used. Mean sensitivity was computed in an interval of false-positive frac-
tions less than 10%. With CAD prompting, mean sensitivity of the readers increased
significantly from 35.2% to 42.8%. When using interactive CAD, the performance of
the average reader increased significantly to 49.5%. Using CAD interactively as a de-
cision aid can improve readers’ detection performance significantly compared to the
traditional use of CAD prompts, in particular at low false positive rates.
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8.1 Background

It is generally believed that perception errors in radiology may be reduced if a com-
puter aided detection system displays prompts on potential abnormalities it has de-
tected209. In this way it can be avoided that these abnormalities are overlooked. When
CAD is very sensitive, prompts may also reduce reading times, as radiologists can then
use CAD as a reliable guide to quickly find relevant image regions that need careful
inspection. Many studies have shown that CAD prompts can have a positive effect on
detection performance86. However, in practice CAD technology is not yet widely used.
Radiologists are generally not convinced that the technology is effective at its current
stage. The major complaint is that CAD produces too many false positives. Only in
mammography CAD systems are used on a large scale210.

In this study we investigate a new concept for presenting CAD results, which aims
at making CAD more tolerable and more effective. The study is motivated by the fact
that in radiological detection tasks the reader does not only have to find potential le-
sion locations, but also has to decide whether abnormalities are true lesions or not and
if they are actionable. CAD prompts only help with the search task and leave the sec-
ond task to the reader. This is remarkable, because there is no evidence that the search
task is more difficult for readers than the interpretation task. In fact, some experimen-
tal studies suggest that the reverse is true in common radiological tasks. In addition,
it seems that computers are better in lesion interpretation than in searching for them.
Lesion characterization studies have been reported in which the computer performs
equal or better than experienced radiologists211–214, while in standalone lesion localiza-
tion tasks CAD systems generally perform much worse than human observers, due to
a higher false positive rate. Therefore, we investigate how CAD can be used to improve
the decision stage, when the potential abnormality already has been localized.

CAD algorithms developed for detection of abnormalities do not need to be changed
to use them as a decision aid. CAD results should only be presented in a different way
to the readers. We propose an interactive method, in which CAD results associated
with a specific image location are only shown if the reader queries the location. The
idea is that if the reader is in doubt whether an actionable abnormality is present at
the queried location CAD may help to make the right decision. CAD results displayed
to the reader may depend on the application, but an essential component should be
a score representing the probability that a true lesion is present. Such a score is com-
monly computed by CAD systems. In prompting systems this score is used to deter-
mine if a prompt should be shown or not. Only when the score exceeds a predefined
threshold a prompt is shown. In this study, a contour representing the outline of the
lesion detected by CAD is shown in addition to the suspiciousness score. CAD results
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are displayed only when the reader probes a location that holds CAD information with
a score exceeding a threshold.

To study the proposed CAD presentation method we focus on lung nodule detec-
tion in chest radiography. A preliminary report on this work was published previ-
ously204. Lung cancer is a leading cause of death worldwide, and accounts for 1.4
million deaths in 2008215. Chest radiography is the most common imaging technique
for the diagnosis of pulmonary diseases, mainly due to low cost and short examina-
tion time94. However, it has been shown that the detection of pulmonary nodules at
an early stage in chest radiographs is an extremely difficult task for radiologists and
there are many papers reporting about radiological error in chest radiography95–99. Of
particular interest here are studies from the perception literature. In a well known ex-
periment with briefly flashed chest radiographs (a few tenths of a second), Kundel and
Nodine10 showed that visual search for pulmonary nodules begins with an almost im-
mediate and global response with surprisingly high performance. More recently, it has
been shown that the majority of errors in the detection of pulmonary nodules is related
to recognition and interpretation, whereas only a minor fraction can be explained by
incomplete search patterns4,5,216.

Lung nodule detection in chest x-rays was one of the first applications for which
CAD was developed. Commercial systems providing CAD prompting exist but are
not yet widely used. Several research groups have been investigating the performance
of CAD systems for the detection of lung nodules on chest radiographs103–105, and the
effect on the radiologists’ performance107,108,119,217. Current clinical CAD systems for the
detection of lung nodules in chest radiographs are based on the idea that prompts will
help avoid perception errors. Results from perception studies reported above suggest
that providing CAD prompts may not be the most effective approach to reduce nodule
detection errors and that the interactive presentation method may lead to better results.
In a previous study we already demonstrated that interactive display of CAD had a
positive effect on reader performance in mammography88. In this study the purpose is
to make a direct comparison between the effect of prompts and interactive use of CAD.

8.2 Method

8.2.1 Data set

All chest radiographs used in this study were selected from the publicly available JSRT
database of the Scientific committee of the Japanese Society of Radiological Technol-
ogy218. It consists of 247 posteroanterior chest radiographs; 154 images are abnormal
containing a solitary pulmonary nodule, and 93 are normal. The images were digitized
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from original screen-film images with a 0.175mm pixel size, 2, 048× 2, 048 matrix size,
and a gray scale depth of 12 bits. The cases were collected from 13 medical centers
in Japan and one in the United States. The radii of the nodules range from 2.5mm

to almost 30mm, and the median value is 7.4mm. The nodules were divided into five
subtlety categories based on the consensus of three chest radiologists: extremely subtle
(n = 25), very subtle (n = 29), subtle (n = 50), relatively obvious (n = 38), and obvious
(n = 12). More than two-third of the cases were considered subtle. By using a public
database for our study comparison of results to other studies is facilitated.

8.2.2 CAD system

The CAD results of a commercially available CAD system OnGuard™5.0 (Riverain
Medical®, Miamisburg, Ohio, USA) were used. For the JSRT database, this CAD sys-
tem prompted 386 locations: 105 on normal images and 281 on abnormal images. 43
images have no CAD prompts at all: 31 normal images and 12 abnormal images. For
each CAD prompt Riverain Medical provided a computer estimated malignancy score
between approximately −1.0 and 9.0, where a higher number indicates a higher likeli-
hood of malignancy.

This internal CAD score is an abstract measure for suspiciousness that is hardly,
or not, to be understood by humans. Therefore, we converted this abstract score into
an interpretable measure, namely the probability that the prompted CAD location is
inside a truth region, i.e., the probability that it is a true-positive (TP). To prevent bias,
the computations were done by a leaving-one-image-out method. The converted CAD
score could both be displayed as a number ∈ [0, 1] and as color coding. See the ap-
pendix for a detailed description of the conversion procedure.

8.2.3 Workstation

For the purpose of this study, a previously developed workstation is used that has basic
functionality such as zooming, image manipulation, local contrast enhancement and
grayscale inversion tools. The brightness and contrast settings were easily adjustable
and were set in advance for optimal efficiency. The chest radiographs were viewed on
a 30 inch color LCD panel (model FlexScan SX3031W; Eizo Nanao Technologies Inc.,
Hakui, Ishikawa, Japan) with a native resolution of 2, 560 × 1, 600, a contrast ratio of
900 : 1, and an intensity of 260 cd/m2. On the workstation (see Figure 8.1) the presence
of CAD prompts can be queried interactively by clicking on suspect regions in the
chest radiograph using the computer mouse. When a location in the chest radiograph
is queried, the workstation checks if a CAD mark exists on that location. If a CAD
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mark is available, a circle is displayed with the computer-estimated probability. The
circle is colored based on the probability of cancer and ranged continuously from red
to green, for respectively high to low probabilities.

Figure 8.1: Snapshot of the CAD workstation used in the observer experiment. A snapshot
made during a session with interactive CAD prompts. The label with “1” on the left lung is an
annotation made by the reader. The (red) circular region on the right lung is a CAD prompt
given after that the subject queried that location with a pointer device. The display provides a
CAD computed probability of 0.88 that this region is a TP, while the probability also determines
the color of the prompt. After all regions a user wants to report are marked, readers have to
provide ratings of the findings with a slider before they can continue with the next case.

8.2.4 Experimental Design

In this study two conditions were investigated, traditional prompting CAD in a se-
quential design and interactive CAD in a concurrent design. In the traditional prompt-
ing CAD session, the readers were first asked to mark suspect regions without access
to CAD. Then the marked regions were scored using a continuous rating scale be-
tween 0 (not suspect) and 100 (highly suspect). After the reader marked and rated the
case, all available CAD prompts for the image were displayed without any information
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about how suspicious the prompts are. The reader can accept the prompts as relevant
and report them, or dismiss them. In addition to adding new findings, the reader has
to confirm existing findings reported before the CAD prompts were displayed. The
reader was also allowed to modify ratings of the annotations previously made without
assistance of CAD.

In the interactive CAD session, areas of interest or suspicion can be sampled inter-
actively by the reader. If a CAD prompt is available at a queried location then it is
displayed by a color-coded circle (green: not suspect; red: highly suspect) and a num-
ber giving the probability that the prompt is a TP (see Figure 1). Suspect regions are
marked by the reader while reading, and scored with ratings between 0 (not suspect)
and 100 (highly suspect) after all regions are marked.

The experiment started with a training phase. For this purpose, a representative
set of twenty-four chest radiographs were selected from the JSRT database containing
nodules from all 5 subtlety categories. First, subjects were able to see the twenty-four
images together with their ground truth and CAD regions. This phase was meant to
demonstrate the subtlety of typical pulmonary nodules in the database and to famil-
iarize non-experienced readers with the nodule detection task. Thereafter, the same
twenty-four images were presented under the two experimental conditions to become
acquainted with the user-interface and to establish a strategy for scoring the suspi-
ciousness of annotations. The remaining 223 JSRT images were used for the actual
experiment. Three random, mutually exclusive sets of images were constructed, con-
sisting of about 75 images each. The sets were stratified by a subtlety rating that is
available for all abnormal JSRT images. Each image was seen twice by a subject; once
in each of the two experimental conditions. A total of six sessions were done, i.e., two
conditions × three image sets. The order of image sets and reading methods were
balanced over the subjects to minimize learning bias. We took care that no images
were seen twice in the first three sessions, and only in the last three sessions images
are presented for the second time (with the alternative reading method). To decrease
a potentially negative effect of remembering cases we demanded a pause of at least a
week between the first and the second three sessions.

The subjects’ task was to find as many as possible abnormalities with as least as
possible mistakes. The subjects were told to treat CAD as an auxiliary tool, a second
reader, and not as the leading system. The subjects knew the prevalence of images
with pulmonary nodules and they also knew the performance of the CAD system,
which was summarized by a FROC curve and the fractions of lesions per probability
rating.
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8.2.5 Readers

Six readers participated in this experiment. All subjects were non-radiologists involved
in radiological research projects. Two of them had extensive experience with reading
chest radiographs, two had limited experience, and two had no experience with inter-
preting chest images. All subjects had normal, or corrected to normal vision and were
familiar with the purpose of the experiment.

8.2.6 Reading times

There was no limitation on the reading time. During the reading sessions reading times
per case were automatically recorded. When a subject did not move the mouse and did
not do any other action on the workstation for more than 2 minutes this was recorded
as idle time in the experiment data file. This idle time is subtracted from the reading
time on the basis of the assumption that these excessively long idle times were the
result of interruptions during the session. The average reading time per case and its
standard deviation was computed for every reader for all three reading modes. Paired
reading times were compared by Wilcoxon signed rank testing. A p value of less than
0.05 was considered to indicate a statistically significant difference.

8.2.7 Performance analysis

We used localization receiver operating characteristic (LROC) analysis for evaluation
the readers’ performance in the detection of lung nodules on chest radiographs. To
determine a LROC, the decision threshold is varied and the correct localization fraction
is plotted as a function of the fraction of normal cases that were recalled.

An marked location or CAD location is considered a true-positive (TP) when it is
less than 2 cm from the center of a pulmonary nodule, otherwise it is considered a
false-positive (FP). In clinical routine only few chest radiographs have suspicious nod-
ules. Therefore, the left part of the LROC curves represents the most relevant range.
Sensitivity for higher false positive levels is undefined, as readers reported findings in
only a fraction of the normal cases. The performance is computed as the mean correct
localization fraction in the false-positive fraction interval ranging from 0 to 0.1. This in-
terval was chosen because in screening programs radiologists usually have recall rates
below 10%.

We performed receiver operating characteristics (ROC) analysis to compare the per-
formance of the readers in this study to the results of twenty radiologists that were
published in Shiriashi et. al.218 for the same data set, without the aid of CAD. In addi-
tion, we evaluated readers performance using jackknife free-response receiver operat-
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ing characteristics software (JAFROC 4.0, Dev P Chakraborty, 2011), which is used to
estimate statistically significant differences between alternative FROC curves.

8.3 Results

The detection performance of the readers and the CAD system is given in Figure 8.2.
In clinical routine only few chest radiographs have suspicious nodules. Therefore, the
left part of the LROC curves represents the most relevant range. Sensitivity for higher
false positive levels is undefined, as readers reported findings in only a fraction of the
normal cases. As in previous research88, the performance is computed as the mean
correct localization fraction in the false-positive fraction interval ranging from 0 to 0.1.
With traditional CAD, the performance of the average reader increased at a low false-
positive range from 35.2% to 42.8%. When using interactive CAD the performance of
the average reader increased from 35.2% to 49.5% in the same false-positive range. The
differences between the columns in the table are significantly different from zero (sign
test: p < .05). The performance of the CAD system, 39.1% in the false-positive fraction
interval 0 to 0.1, appeared to be surprisingly good. CAD stand alone was better than
the average reader without CAD support.

Table 8.1: Chest radiograph reading times. Average reading times per case (seconds). Reading
times are displayed as mean ± standard deviation.

Reader Without CAD Traditional CAD Interactive CAD

r1 16.7± 7.7 28.5± 13.6 16.1± 6.7

r2 48.2± 34.9 61.9± 42.9 39.2± 24.9

r3 48.6± 35.0 57.9± 38.3 40.1± 26.8

r4 33.6± 24.1 47.2± 30.3 41.9± 25.9

r5 31.9± 27.4 42.7± 32.5 54.9± 38.2

r6 25.3± 19.5 33.4± 23.4 26.7± 16.9

average 34.0± 28.8 45.2± 33.8 36.5± 28.0

The figure-of-merit values obtained with JAFROC for the average reader shows that
the performance of the readers is 0.673 without using CAD. Using traditional CAD, the
performance increased to 0.713 (p < 0.001). Using interactive CAD, the performance
increased to 0.725, which was statistically significant different from using no CAD (p <
0.001). However, there was no statistically significant difference between both CAD
modes. This can be explained by the fact that JAFROC evaluates the area under the
whole AFROC curve. It was shown with LROC analysis that using interactive CAD
had a more beneficial effect on the detection performance within the clinically relevant
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(a) Average LROC curves

Reader Without CAD Traditional CAD Interactive CAD

r1 0.286 0.401 0.466

r2 0.394 0.485 0.555

r3 0.376 0.405 0.477

r4 0.427 0.479 0.485

r5 0.302 0.444 0.520

r6 0.324 0.355 0.468

average 0.352 0.428 0.495

(b) Individual Performances

Figure 8.2: LROC curves. Four LROC curves are given in Figure 8.2a. Except for the stand alone
CAD performance, the curves are averages over all subjects. Table 8.2b gives the individual
performances of the subjects. These are computed as the mean correct localization fraction in
the false positive fraction ranging from 0 to 0.1. Notably, the stand alone detection performance
of the CAD system is 0.391.
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current study. Note the large variation in detection performance among readers.
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false-positive fraction interval than using traditional CAD. Using traditional CAD led
to a higher sensitivity, but not at a satisfactory recall rate.

In Figure 8.4 the receiver operating characteristic curves are plotted for the twenty
radiologists from the study from Shiriashi et. al.218, and the ROC curves for the readers
that participated in this study.

The average time to read a case without CAD was 34.0±28.8s. The average reading
time increased to 45.2±33.8swhen the traditional CAD prompts were activated and the
reader re-evaluated his findings. In the interactive CAD session, the average reading
time was 36.5± 28.0s (Table 8.1).

8.4 Discussion

Our results indicate that interactive use of CAD can benefit readers in interpreting
lung nodules on chest radiographs. The performance of the readers with interactive
CAD is significantly better than traditional prompting CAD in a clinically important
recall interval below ten percent. This confirms the hypothesis that readers take more
advantage of CAD as interpretation aid than detection aid.

In the interactive mode, less false-positives are exposed to the readers as only a
limited number of regions are queried. Because the regions are displayed on reader’s
request while reading the case, the reading process is not disrupted. Moreover, the
reading time with interactive CAD is significantly smaller (p < 0.001) than reading
with traditional CAD. On average, it took only 2.5 seconds longer to read a case using
interactive CAD compared to unaided reading of a case.

The experience level of the readers could influence how beneficial CAD is: less
experience will lead to a potentially bigger increase in detection performance. The
performance of the readers that participated in this study is comparable to that of the
lower range of general radiologists, as was shown in Figure 8.4, and a large variation in
the detection performance of the observers can be observed. On average, the detection
performance of the readers was lower than the radiologists that participated in the
JSRT study218. We are planning to conduct an observer study with experienced chest
radiologists to evaluate the effect of interactive CAD on their detection performance.

Further improvements might be achievable by adding traditional CAD prompts
in the interactive mode, especially if they are rated highly suspicious by CAD and
are on regions that were not interactively inspected by the reader, to help overcome
occasional perception errors. Especially when lesions are obscured by other tissue, e.g.,
by the heart, interactive CAD can be inadequate, because lesions are harder to find in
those regions and thus often not queried. In those cases a hybrid presentation of CAD
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results may be helpful. In such a system, obscured CAD findings could be presented
traditionally and the unobscured CAD findings could be queried interactively. An
other possibility would be offering cases that were not recalled with very suspicious
non-inspected CAD results at the end of the reading session.

Our study was limited in that the participants in this study were not reading under
normal screening conditions. This was a controlled laboratory experiment, in which
the participants knew the balance between cancer and normal cases and that their de-
cisions would be monitored. They were also explicitly asked to search for lung nod-
ules, whereas in clinical practice chest radiographs are also often requested for other
reasons than lung cancer screening. Because their assessments in this observer study
would not affect patient care, their decisions could be different from those in an actual
clinical setting201. The reading conditions in the sessions with sequential traditional
CAD and interactive CAD were similar, and therefore the observed improvement of
detection performance can be attributed solely to the use of interactive CAD.
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Appendix

In this section we explain in detail how we have computed the probabilities that were
shown to the reader for each CAD prompt. Suppose we have a set of images with
given truth regions. Furthermore, for each image we have a number of CAD regions;
these are locations plus some corresponding raw scores. A CAD score is in general an
abstract measure for suspiciousness that is hardly, or not, to be understood by humans.
Therefore, we converted this abstract score into a interpretable measure, namely the
probability that the prompted CAD location is inside a truth region, i.e., a TP.

The probability for a TP or a FP can be modeled by

Pr {r|s, α, β} =

{
Ψ (β (s− α)) for r = TP

1− Ψ (β (s− α)) for r = FP

where r is the class of the CAD region, s the raw CAD score, and Ψ is a sigmoid
function, e.g., a logistic function

Ψ (t) =
1

1 + exp (−t) ,
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(used in this paper) or an error function. If α and β are somehow computed, say they
have fixed values α∗ and β∗, then

Pr {TP|s} = Pr {r = TP|s, α∗, β∗} = Ψ (β∗ (s− α∗)) .

The problem is now to find the parameters α∗ and β∗.
Assuming that all regions are independent (and that is not a bad assumption, as

images are independent), we can compute the following probability (r is a set of true-
positive and false-positive CAD regions, and s are the corresponding raw CAD scores)

Pr {α, β|s, r} =
Pr {α, β|s}Pr {r|s, α, β}

Pr {r|s}

=
Pr {α, β|s}∏i Pr {ri|si, α, β}

Pr {r|s}

Pr {α, β|s} is the prior pdf. We could have defined some function for this, but we leave
it as a constant. Pr {r|s} can be viewed as a normalization constant. Hence,

Pr {α, β|s, r} ∝
∏
i

Pr {ri|si, α, β}

Likelihood function (taking the logarithm and ignoring constants):

L (α, β|s, r) =
∑
i

log Pr {ri|si, α, β}

=
∑
i

{
log (Ψ (β (si − α))) , for ri = TP
log (1−Ψ (β (si − α))) , for ri = FP

The maximum likelihood estimator is

(α∗, β∗) = arg max
α,β
{L (α, β|s, r)}

In Figure 8.5, the fitted curve Pr {r = TP|s} is given for the JSRT database. Fig-
ure 8.6a shows the distribution of CAD scores, and Figure 8.6b shows the distribu-
tion of probabilities that are associated with those CAD scores. One important remark
should be made about the latter: the probabilities for CAD prompts in a certain image
are computed by leaving that images out of the computations of the parameters α and
β. Otherwise, the probability would be biased.

Figure 8.7 shows two FROC curves, one that is constructed from raw CAD scores
and one that is constructed from Pr {r = TP|s}. One could argue that the latter would
give better results. If that was true then the reader only needed to copy the given
Pr {r = TP|s} to outperform the CAD system. Luckily this is not possible. Some infor-
mation seems to be lost due to the conversion of CAD scores, but not much.
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[181] Altrichter M., Ludányi Z., and Horváth G. Joint Analysis of Multiple Mammographic Views in
CAD Systems for Breast Cancer Detection. In Image Analysis, volume 3540 of Lecture Notes in
Computer Science, pages 760–769, 2005.

[182] Iglesias J. E. and Karssemeijer N. Robust initial detection of landmarks in film-screen mammo-
grams using multiple FFDM atlases. IEEE Transactions on Medical Imaging, 28(11):1815–1824, 2009.

[183] Kopans D. B. Breast Imaging. Lippincott Williams & Wilkins, 3rd edition edition, 2006.
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Summary

For many years, it has been recognized that even the best radiologists make errors
when reading medical exams including perception failures and interpretation failures.
To reduce these problems, computer aided detection and diagnosis systems have been
designed to aid radiologists detecting and classifying abnormalities. The first part of
this thesis concerns combining information from multiple mammographic projection
views to improve detection performance of computer aided detection systems. Most
computer-aided detection systems that are used in the clinic today are focussed on
reducing perception errors. The research presented in the second part of this thesis
investigates if presenting CAD results in a fundamentally different way to avoid inter-
pretation errors is more effective than current computer aided detection methods that
focus on preventing perceptual oversights in medical screening.

In Chapter 2, two machine learning techniques, namely support vector machines
and Bayesian networks, were evaluated for characterizing masses as either benign or
malignant. In addition, the effectiveness of dimension reduction (principal component
analysis) and normal distribution transformation (Manly transformation) were inves-
tigated. It was found that the area under the ROC curve (Az) of the naive Bayesian
classifier increased significantly (p=0.0002) when the Manly transformation was used,
from Az = 0.767 to Az = 0.795. The Manly transformation did not result in a signifi-
cant change for support vector machines. The difference between the support vector
machines and the naive Bayesian classifiers using the transformed data set was not
statistically significant (p=0.78). Applying dimension reduction in the form of PCA
improved the classification accuracy of both classifiers, but the difference between the
two classifiers after applying PCA was not statistically significant.

In a breast screening program, it is important to combine all available information
from a patient for making a referral decision. In Chapter 3 a Bayesian network frame-
work was proposed that exploits multi-view dependencies for the analysis of screen-
ing mammograms. Instead of focussing on improving the localized detection of breast
cancer, a CAD system was built that discriminates between normal and cancerous pa-
tients. It was investigated whether a reliable likelihood measure for a patient being
cancerous could be obtained by combining information available as detected regions
from a single-view CAD system from both mammographic views. This approach was
tested with screening mammograms for 1063 patients of whom 385 had breast cancer.
The results show that the multi-view modeling lead to significantly better performance
in discriminating between normal and cancerous patients compared to using a single-
view CAD system.

During screening, a medio-lateral oblique (MLO) and cranio caudal (CC) view are
often obtained from both breast. To train CAD systems that use correspondence infor-
mation, corresponding regions in those views have to be found. Therefore, in Chapter 4
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a method was developed to classify region pairs into the four possible types (combi-
nations between a TP region in both views, a combination between a TP and FP or FP
and TP, and combinations between FP regions). For each combination between regions
some similarity features are calculated such as the difference in distance to the nipple,
grayscale correlation, histogram correlation and other features that indicate similarity.
Using these features, a 4-class k-Nearest Neighbour classifier was trained, to determine
the four likelihoods for each combination type. The method was tested on an anno-
tated dataset with 412 cases. Results show that for 82.4% of the TP regions, a correct
link could be established. The difference between the 4-class kNN classifier and the
LDA classifier from previous research was not statistically significant. When choosing
threshold such that the percentage of correct TP-TP combinations is 70%, the number
of TP-FP combinations decreases significantly when using the 4-class kNN classifier
(Fisher’s exact test, p ≤ 0.0008). It is expected that the decrease in TP-TP combinations
will have a less negative effect on the detection performance of the two-view classifier
because the regions are independently analyzed by the single-view CAD system.

Radiologists generally combine information from multiple views to detect suspi-
cious regions in mammograms. However, most of the current CAD systems analyze
each view independently. It was investigated if case-based detection performance
could be improved by optimizing the learning process of the multi-view classifier.
Based on the output of a correspondence classifier that classified region pairs into the
four possible types, the selection of training patterns to train the multi-view CAD sys-
tem was biased. In that way, the training could be focussed towards improvement
of case-based detection performance. The method was tested on 454 mammograms
consisting of 4 views with a malignant region visible in at least one of the views. Case-
based evaluation showed a mean sensitivity improvement of 4.7% in the range of 0.01-
0.5 false positives per image.

Mammographic CAD systems that are currently used in clinical practice focus only
on the problem of perception errors; however, misinterpretation is a far more com-
mon cause of missing breast cancer in screening than perceptual oversights. In Chap-
ter 6 it was investigated if a workstation that allows readers to probe image locations
for the presence of CAD information while reading mammograms could improve de-
tection performance. If a CAD finding was present on the queried location, it was
displayed with the computer estimated malignancy score. The approach was evalu-
ated using an observer study with nine readers (four screening radiologists and five
non-radiologists). The participants read 120 cases of which 40 cases had a malignant
mass that was missed at the original screening. The performance of the average reader
significantly increased with interactive CAD at low false-positive rates from 25.1% to
34.8%, without affecting reading time. It was found that in addition to using CAD in
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the traditional way to avoid perception errors, there is a large potential for using CAD
as a decision aid to reduce interpretation failures.

In Chapter 7 it was investigated if the interactive computer-aided detection (CAD)
system introduced in 6 increases mass detection performance in comparison to the
regular CAD prompting systems currently used in clinical practice. An observer study
was conducted in which six certified screening radiologists and three residents read
200 difficult cases. Results show that the reader sensitivity increased significantly (p <
0.01) when interactive CAD was used (58.5%) compared to both reading without CAD
(51.2%) and reading with CAD prompts (51.1%). There was no significant difference
found in the number of unreported abnormal cases when mammograms were read
with interactive CAD compared to reading with prompting CAD or to reading without
CAD.

In the last chapter it was investigated if the interactive method of presenting CAD
results could also improve the usefulness of CAD in another application, namely the
detection of nodules in chest radiographs. The effect of prompts and interactive use
of CAD for detecting chest nodules was compared. Six readers read 247 chest radio-
graphs that were selected from the publicly available JSRT database. The CAD results
were taken from the commercially available CAD system (Riverain OnGuard™5.0). It
was shown that with CAD prompting, mean sensitivity of the readers increased sig-
nificantly from 35.2% to 42.8%. When using interactive CAD, the performance of the
average reader increased significantly to 49.5%. This showed that CAD as a decision
aid can improve readers’ nodule detection performance compared to the traditional
use of CAD prompts, in particular at low false positive rates.
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Al vele jaren wordt erkend dat zelfs de beste radiologen fouten maken bij de beoordel-
ing van radiologische beelden, waaronder perceptie fouten en interpretatie fouten. Om
deze problemen te verminderen, zijn computer-ondersteunde detectie (CAD) and di-
agnose systemen ontworpen om radiologen te helpen met het detecteren en classifi-
ceren van afwijkingen. Het eerste deel van dit proefschrift heeft betrekking op het
combineren van informatie uit meerdere mammografische opnamerichtingen om de
prestaties van een CAD systeem te verbeteren. De meeste CAD systemen die heden-
daags worden gebruikt in de kliniek zijn gericht op het verminderen van perceptie
fouten. Het onderzoek beschreven in het tweede deel van dit proefschrift bestudeert of
de presentatie van CAD resultaten op een fundamenteel andere wijze om te voorkomen
dat interpretatie fouten worden gemaakt effectiever is dan de huidige CAD systemen
die zich richten op het voorkomen dat een tumor wordt overzien.

In hoofdstuk 2 werden twee machine learning technieken, support vector machines
en Bayesiaanse netwerken, geëvalueerd voor het karakteriseren van tumorschaduwen
als goedaardig of kwaadaardig. Daarnaast werd de effectiviteit van dimensie reductie
(principal component analysis) en de normale verdeling transformatie (Manly trans-
formatie) onderzocht. Er werd vastgesteld dat de oppervlakte onder de ROC curve
(Az) van de naı̈eve Bayesiaanse classifier significant toenam (p=0,0002) als de Manly
transformatie werd gebruikt, van Az = 0, 767 tot Az = 0, 795. De Manly transformatie
resulteerde niet in een significante verandering voor support vector machines. Het
verschil tussen de support vector machines en de naı̈eve Bayesiaanse classifiers met
behulp van de getransformeerde data set was niet statistisch significant (p = 0,78).
Toepassing van dimensie reductie in de vorm van PCA verbeterde de classificatie
nauwkeurigheid van beide classifiers, maar het verschil tussen de twee classifiers na
deze dimensie reductie was niet statistisch significant.

In een bevolkingsonderzoek programma is het belangrijk om alle beschikbare infor-
matie van een patiënt te combineren om tot een beslissing te komen om de patiënt te
verwijzen of niet. In hoofdstuk 3 werd een Bayesiaans netwerk raamwerk voorgesteld
dat afhankelijkheden tussen meerdere radiografische opnamen gebruikt voor de anal-
yse van mammogrammen verkregen tijdens het bevolkingsonderzoek. In plaats van
te focussen op het verbeteren van het exact lokaliseren van borstkanker, werd een
CAD-systeem ontwikkeld dat discrimineert tussen patiënten met en zonder kanker.
Er werd onderzocht of een betrouwbare maat kan worden verkregen voor de kans
dat een patiënt kanker heeft door het combineren van beschikbare informatie zoals
gedetecteerde regio’s uit een single-view CAD-systeem van beide mammografische
opnamerichtingen. Deze aanpak werd getest met screeningsmammogrammen voor
1063 patiënten, van wie 385 borstkanker had. De resultaten laten zien dat deze meth-
ode leidt tot een significant betere prestatie in het onderscheid maken tussen normale
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en kanker patiënten vergeleken met het gebruiken van een single-view CAD systeem.
Tijdens de screening wordt vaak een medio-laterale oblique (MLO) opnamerichting

en een cranio caudaal (CC) opnamerichting verkregen van beide borsten. Om CAD-
systemen te trainen die correspondentie informatie gebruiken, moeten regio’s die bij-
elkaar horen worden gevonden in beide opnamerichtingen. Daarom is in hoofdstuk 4
een methode ontwikkeld om regioparen in te delen in de vier mogelijke types (combi-
naties tussen een TP regio in beide opnamerichtingen, een combinatie tussen een TP
en FP of FP en TP, en de combinaties tussen FP regios). Voor elke combinatie tussen
de regio’s werden gelijkheidskenmerken berekend, zoals het verschil in afstand tot
de tepel, grijstinten correlatie, histogram correlatie en andere kernmerken die gelijke-
nis aangeven. Met behulp van deze kenmerken, werd een 4-klasse k-Dichtsbijzijnde
Buren classifier getraind, om de vier waarschijnlijkheden voor elke combinatie type
te bepalen. De methode werd getest op een geannoteerde dataset bestaande uit 412
patiënten. De resultaten tonen aan dat voor 82.4 % van de TP’s, een juiste link kon
worden vastgesteld. Het verschil tussen de vier-klasse KNN classifier en de LDA clas-
sifier uit eerder onderzoek was niet statistisch significant. Bij de keuze van de drempel
zodat het percentage van de juiste TP-TP combinaties 70 % is, vermindert het aantal
TP-FP combinaties significant bij het gebruik van de 4-klasse KNN classifier (Fisher’s
exact test, p ≤ 0, 0008). De verwachting is dat de reductie van het aantal TP-TP com-
binaties een minder negatief effect zal hebben op de tumordetectie prestaties van de
multi-view classifier, omdat de regio’s dan onafhankelijk worden geanalyseerd door
het single-view CAD-systeem.

In de dagelijkse praktijk combineren radiologen informatie uit meerdere opname-
richtingen (mediolateral oblique (MLO) en cranio-caudal (CC) opnames) om verdachte
tumors te detecteren in mammogrammen. Echter de meeste van de huide CAD syste-
men analyseren elke opnamerichting onafhankelijk. Er werd onderzocht of de patiënt-
gebaseerde prestaties can een CAD systeem verbeterd zou kunnen worden door het
optimaliseren van het leerproces van een ’classifier’, een computer-programma afkom-
stig uit de kunstmatige inteligentie die probeert de cognitieve vaardigheden van de
mens te evenaren of overtreffen. Op basis van de informatie van een correspondentie
classifier die de combinaties van verdachte regio’s probeert in te delen in de vier mo-
gelijke gevallen, wordt een bepaalde selectie van regio’s met hun kenmerken aange-
boden om een multi-view CAD systeem te trainen. Door een bepaalde selectie van
patronen aan te bieden, zou men het leren van de classifier kunnen focussen op het
verbeteren van patiënt-gebaseerde prestaties, dat wil zeggen dat het detecteren van de
tumor in een van de opnamerichtingen volstaat. Deze methode werd getest op mam-
mogrammen van 454 patiënten. Van elke patiënt zijn er 4 beelden (2 borsten in elk
2 opnamerichtingen) beschikbaar met een kwaadaardige regio zichtbaar in ten min-
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ste een van de opnamerichtingen. Uit de patiënt-gebaseerde evaluatie bleek dat de
gemiddelde sensitiviteit verbetert van 4,7 % in het bereik van 0,01 tot en met 0,5 false
positives per beeld.

Mammografische CAD-systemen die momenteel worden gebruikt in de klinische
praktijk richten zich uitsluitend op het probleem van de perceptie fouten, maar ver-
keerde interpretatie is een veel meer voorkomende oorzaak van het missen van borst-
kanker bij het screenen dan perceptuele vergissingen. In hoofdstuk 6 werd onderzocht
of een werkstation die het mogelijk maakt om tijdens het lezen van de mammogram-
men CAD informatie op te vragen door met de computermuis te klikken op verdachte
gebieden, de tumordetectie prestaties kan verbeteren. Als er CAD informatie beschik-
baar was op de opgevraagde locatie, dan werd de CAD prompt getoond als een gek-
leurde contour (variërend van geel tot rood) met een door de computer geschatte kans
op maligniteit. De aanpak werd geëvalueerd met behulp van een waarnemer studie
met negen lezers (vier screening radiologen en vijf niet-radiologen). De deelnemers
lazen 120 gevallen, waarvan 40 gevallen een kwaadaardige tumorschaduw hadden
die werd gemist tijdens de oorspronkelijke screening. De sensitiveit van de gemid-
delde lezer nam significant toe met het gebruik van interactief CAD, bij een lage fout-
positieve doorverwijzingspercentage, van 25,1 % tot 34,8 %, zonder dat dit invloed had
op de leestijd. Er werd gevonden dat, naast het gebruik van CAD op de traditionele
manier om perceptie fouten te vermijden, er een groot potentieel is voor het gebruik
van CAD als een beslissingsondersteuning om interpretatie fouten te verminderen.

In hoofdstuk 7 werd onderzocht of het interactieve CAD systeem geintroduceerd in
hoofdstuk 6 leidt tot een hogere tumorschaduw detectie performance in vergelijking
met de traditionele CAD prompt systemen die momenteel in de klinische praktijk wor-
den gebruikt. Een waarnemer onderzoek werd uitgevoerd waarin zes gecertificeerde
screening radiologen en drie residents 200 moeilijke gevallen hebben gelezen. De resul-
taten tonen aan dat de sensitiviteit van de lezer significant toenam (p < 0, 01) wanneer
interactief CAD werd gebruikt (58,5 %) ten opzichte van zowel het lezen zonder CAD
(51.2 %) en het lezen met CAD-prompts (51.1 %). Er werd geen significant verschil
gevonden in het aantal niet-gemelde gevallen wanneer abnormale mammogrammen
werden gelezen met interactieve CAD in vergelijking met het lezen met prompting
CAD of het lezen zonder CAD.

In het laatste hoofdstuk werd onderzocht of de interactieve manier van het presen-
teren van CAD resultaten ook het nut van CAD zou kunnen verbeteren in een andere
toepassing, namelijk bij het opsporen van knobbeltjes (nodules) in borstkas röntgen-
foto’s. Het effect van CAD prompts en interactief gebruik van CAD voor het opsporen
van long nodules werd vergeleken. Zes lezers lazen 247 thoraxfoto’s die werden gese-
lecteerd uit de openbaar beschikbare JSRT database. De CAD-resultaten waren afkom-
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stig van het commercieel beschikbare CAD-systeem (Riverain OnGuard TTra 5.0). Er
werd aangetoond dat met CAD prompts, de gemiddelde sensitiviteit van de lezers
significant toenam van 35,2 % tot 42,8 %. Bij het gebruik van interactief CAD, nam de
prestatie van de gemiddelde lezer significant toe tot 49,5 %. Daaruit bleek dat inter-
actief CAD als beslissingsondersteuning de nodules detectie prestaties van lezers kan
verbeteren in vergelijking met het traditionele gebruik van CAD-prompts, vooral bij
een laag percentage fout-positieven.
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