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Abstract

Breast cancer is the most common life-threatening type of cancer affecting women in
The Netherlands. About 10% of the Dutch women have to face breast cancer in their
lifetime. The success of the treatment of breast cancer largely depends on the stage of a
tumor at the time of detection. If the size of the invasive cancer is smaller than 20 mm
and no metastases are found, chances of successful treatment are high. Therefore, early
detection of breast cancer is essential. Although mammography screening is currently
the most effective tool for early detection of breast cancer, up to one-fifth of women
with invasive breast cancer have a mammogram that is interpreted as normal, i.e., a
false-negative mammogram result. An important cause are interpretation errors, i.e.,
when a radiologist sees the cancer, but classify it as benign. In addition, the number of
false-positive mammogram results is quite high, more than half of women who undergo
a biopsy actually have breast cancer.

To overcome such limitations, Computer-Aided Diagnosis (CAD) systems for automatic
classification of breast lesions as either benign or malignant are being developed. CAD
systems help radiologists with the interpretation of lesions, such that they refer less
women for further examination when they actually have benign lesions.

The dataset we used consists of mammographic features extracted by automated image
processing algorithms from digitized mammograms of the Dutch screening programme.
In this thesis we constructed several types of classifiers, i.e., Bayesian networks and
support vector machines, for the task of computer-aided diagnosis of breast lesions. We
evaluated the results with receiver operating characteristic (ROC) analysis to compare
their classification performance. The overall conclusion is that support vector machines
are still the method of choice if the aim is to maximize classification performance. Al-
though Bayesian networks are not primarily designed for classification problems, they
did not perform drastically lower. If new datasets are being constructed and more
background knowledge becomes available, the advantages of Bayesian networks, i.e.,
incorporating domain knowledge and modeling dependencies, could play an important
role in the future.

v



List of acronyms

BN Bayesian network
CAD computer aided detection
CC cranio caudal
CPD conditional probability distribution
DAG directed acyclic graph
DCIS ductal carcinoma in situ
EM expectation-maximization
EWD equal width discretization
EFD equal frequency discretization
GMM Gaussian mixture model
IC inductive causation
LCIS lobular carcinoma in situ
LDA linear discriminant analysis
MCMC Markov Chain Monte Carlo
MLO medio-lateral oblique
MRI magnetic resonance imaging
MWST maximum weighted spanning tree
NDD non-disjoint discretization
NN neural network
PCA principal component analysis
PDAG partially directed acyclic graph
PKID proportional k-interval discretization
ROC receiver operating characteristic
ROI region of interest
SVM support vector machines
TDLU terminal ductal lobular unit

vi



Acknowledgements

There are a number of people who have, in one way or another, made it possible for me
to write this thesis.

First and foremost, I would especially like to thank my supervisors, Dr. Peter Lucas,
Dr. Perry Groot, and Dr. Ir. Nico Karssemeijer. This thesis may never have been
completed without their support and participation in every step of the process.

I have to thank Peter Lucas for introducing me into the field of Bayesian networks
and for the initiation of this thesis project. He has provided me with advice on which
direction my project should take and his extensive knowledge about Bayesian networks
has been essential to this thesis.

Also, this thesis undoubtedly benefited from Perry Groot’s thorough comments and
advice. During my thesis writing, he provided feedback on various draft versions of the
thesis to make it as accurate as possible and more readable.

It was an honor to have the opportunity to work with Nico Karssemeijer, one of the
finest people in the field of radiology. Besides creating the facilities that were needed to
conduct this research, he never refused giving his time and advice when needed.

I am really indebted to Drs. Sheila Timp who helped me in the first four months of
the project while finishing her PhD thesis. Her patience with my numerous questions
and inexperience with scientific research has been invaluable. Especially her critical
questions and careful listening helped me to understand and further investigate certain
observations.

Also, I would like to thank Drs. Marcel van Gerven for steering me in the right direction
in choosing the appropriate software for constructing Bayesian networks and pointing
out interesting literature.

And not to forget, a lot of friends and acquaintances have helped to take my mind off
work from time to time, I hope that we will be able to stay in touch. I would especially
like to acknowledge the contribution of Christian Gilissen, not just for his insightful
comments and endless support, but also for him being a reliable friend during all the
years we have known each other.

Last, but certainly not least, I could not have completed this thesis without the help of
my family. I want to thank my parents and my sister, for listening to my complaints
and frustrations and for truly believing in me.

vii



1
Introduction

Breast cancer is the most common life-threatening type of cancer affecting women in
The Netherlands [Sta05].

Mammographically
screened women

10,000

Referral for further
examination

100

No referral
9,900

Biopsy
65

No breastcancer
9,940

Breastcancer detected
by mammographic

screening
45

Breastcancer detected
as a result of

additional complaints
15

Figure 1.1: Dutch breast screening results per
10,000 women

About 10% of the approximately 8.25 mil-
lion Dutch women have to face breast can-
cer. Every year there are around 11,000
newly diagnosed breast cancer patients.
Men account for less than 1% of the diag-
nosed breast cancers. 25% of the newly di-
agnosed patients are detected by the breast
cancer screening programme. The Dutch
nationwide breast cancer screening program
is offered to women aged 50-75 and about
76% of the women take part. The mam-
mography screening takes place every 2
years. 100 of the 10,000 mammographi-
cally screened women are recalled for ad-
ditional assessment. If further imaging con-
firms or reveals an abnormality, the woman
may be referred for biopsy which happens 65
out of 100 times. Eventually 45 out of the
10,000 screened women have breast cancer
[The03,WBMS03,OKH+05]. This is schematically shown in Figure 1.1.

Research [OKH+05] shows that increasing the recall rate to 2% would increase the
detection rate and result in about 260 extra tumors. To accomplish that result, an
extra of 8500 women have to be examined.
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1.1 Previous research Chapter 1: Introduction

Several studies have indicated that chances of successful treatment is high if the breast
lesion can be detected at a size less than 2 cm, preferable even under 1 cm. Mammogra-
phy screening, X-ray imaging of the breast, is currently the most effective tool for early
detection of breast cancer.

1.1 Previous research

Machine learning techniques to diagnose breast cancer is a very active research
area. Several Computer Aided Diagnosis (CAD) systems for automatic classifica-
tion of breast lesions as either benign or malignant have been developed. Some of
them are based on Bayesian networks learned on mammographic descriptions pro-
vided by radiologists [BRS00, KRSH97, KRW+95] or on features extracted by image
processing [WZG+99,ZYHWG99,VRRL96]. Other classifying techniques that are used
for the diagnosis of breast lesions are Support Vector Machines [Tim06, NAL+04,
LDP04,MGD+04,BBB+00], Artificial Neural Networks [Tim06,MGD+04,AZC01, ZY-
HWG99, CDK99, DCBW95], Linear Classifiers [MGD+04, FWB+98] and Association
Rule based classifiers [ZAC02]. Most of the computer aided diagnosis systems proved to
be powerful tools that could assist radiologists in diagnosing a patient. In this thesis, we
use two classification methods, namely Bayesian networks and support vector machines,
and use techniques such as dimensionality reduction to improve the accuracy rate of
the classifier. Recently, the combination of PCA and SVM has been used in medical
imagery [LFK06, LCY06], where principal component analysis is applied to extracted
image features and the results are used to train a SVM classifier, but not specifically for
mammograms. To overcome the limitation of PCA that it can eliminate the dimension
that is best for discriminating positive cases from negative cases, we also use a super-
vised dimension reduction technique FDA [DL88]. It is an extension of LDA [DHS01]
such that we get more than only one optimal discriminating vector for using it as a
dimensionality reduction technique rather than as a classifier. Also in previous research
a combination of these two techniques is used [PSSM04,Joo03].

1.2 Purpose of the study

The aim of this project is to increase the quality and efficiency of computer aided diag-
nosis methods (CAD) used in breast cancer screening programs by means of Bayesian
networks or classifiers and Support Vector Machines.

In order to achieve this goal we have set the following objectives:

Develop a novel classification technique using Bayesian networks or Bayesian classifiers

2



1.2 Purpose of the study Chapter 1: Introduction

such that:

• The temporal pattern in the sequence of mammograms is captured by temporal
classifiers

• The number of false positive detections is kept to a minimum

• It allows the handling of missing data and uncertainties

• The resulting classifiers are faithful with respect to the data i.e., the dependencies
and independencies of the data are represented correctly

• Medical background knowledge of the breast cancer domain is incorporated

Compare the performance of the resulting Bayesian networks or classifiers with the
existing technique within UMCN, Support Vector Machines.

3



2
Background

2.1 Breast anatomy

The anatomy of the breast is quite complex, Figure 2.1 shows the most important
structures of the breast. To give an understanding of where and how different breast
tumors may develop, we will shortly describe the structure of the breast. Each breast
contains between 15 and 25 lobes that are connected to the nipple [D] through converging
ducts [A]. Each lobe is made up of many smaller lobules [B]. Each lobule consists of 10
to 100 terminal duct lobular units (TDLU) where milk is produced. The most common
area where breast cancer originates is in the TDLU.

2.2 Breast tumors

We can distinguish three types of breast tumors: benign breast tumors, in situ cancers,
and invasive cancers.

2.2.1 Benign breast diseases

The majority of breast tumors detected by mammography are benign. They are non-
cancerous growths and cannot spread outside of the breast to other organs. In some
cases it is difficult to distinguish certain benign masses from malignant lesions with
mammography.

4



2.2 Breast tumors Chapter 2: Background

Breast profile:
A ducts
B lobules
C dilated section of duct
D nipple
E fat
F pectoralis major muscle
G chest wall/rib cage

Enlargement:
A normal duct cells
B basement membrane
C lumen (center of duct)

Figure 2.1: Breast anatomy: image from www.breastcancer.org

2.2.2 In situ cancer

If the malignant cells have not gone through the basal membrane but is completely
contained in the lobule or the ducts the cancer is called in situ or noninvasive. It does
not spread to the surrounding tissues in the breast or other parts of the body. However,
it can develop into a more serious invasive cancer. There are two forms of non-invasive
breast cancer: ductal carcinoma in situ (DCIS) and lobular carcinoma in situ (LCIS).
The location of breast carcinoma, a cancer that arises from tissue composed of a layer
of cells, determines whether a lesion is classified as ductal or lobular. DCIS is often
characterized in mammograms by the presence of micro calcifications. LCIS is more
difficult to detect with mammography and is usually being discovered incidentally when
taking a biopsy for another abnormality.

2.2.3 Invasive cancer

If the cancer has broken through the basal membrane and spread into the surrounding
tissue it is called invasive. The chances on metastases (spreading of cancer from one part
of the body to another) increase significantly. The success of the treatment of breast
cancer largely depends on the stage of a tumor at the time of detection. There are two

5



2.3 Breast cancer screening Chapter 2: Background

features which determine the stage of a tumor: its size and whether metastases have
been found in lymph nodes or distant areas. Invasive cancers vary in size from less than
10 mm to over 80 mm in diameter. If the size is smaller than 20 mm and if no metastases
are found, chances of successful treatment are high. Therefore, early detection of breast
cancer is essential.

2.3 Breast cancer screening

Several researches [OFL+03, TYV+03, DTC+02] show that breast screening programs
in many countries are an effective way to reduce mortality from breast cancer. The
aim of breast cancer screening is to detect breast cancer as early as possible. Mam-
mographic findings are, however, non-specific in some cases and some lesions may be
indistinguishable from normal tissue.

2.4 Breast imaging modalities

2.4.1 Mammography

Mammography is the technique of choice to detect breast cancer and it is based on
the difference in absorption of X-rays between the various tissue components of the
breast such as fat, tumor tissue, and calcifications. If mammography is not sufficient,
other techniques can be used such as ultrasonography and MRI. This project will focus
on mammography only. Mammography has high sensitivity and specificity, even small
tumors and micro calcifications can be detected on mammograms. The projection of
the breast can be made from different angles. The two most common projections are
medio-lateral oblique (side view taken at an angle) and cranio-caudal (top to bottom
view), as shown in Figure 2.2. The advantage of the medio-lateral oblique projection
is that almost the whole breast is visible, often including lymph nodes. Part of the
pectoral muscle will be shown in upper part of the image. The cranio-caudal view is
taken from above, resulting in an image that sometimes does not show the area close to
the chest wall.

6



2.4 Breast imaging modalities Chapter 2: Background

(a) Medio-lateral oblique (b) Cranio-caudal

Figure 2.2: The two most common projections of the breast

The two most important signs of breast cancer that can be seen on a mammogram
are focal masses and micro calcifications. Other signs are architectural distortions and
asymmetric breast tissue. In this project we are mainly interested in focal masses. When
a mass is present in a breast, a radiologist will estimate its malignancy by looking at
the appearance of the lesion and the surrounding tissue. The most important sign of
malignancy is the presence of spiculation (spiky lines radiating in all directions from a
central region extending into surrounding tissue). Also the borders of a mass may give
additional information about the nature of the mass. Benign masses have sharp, cir-
cumscribed borders where malignant masses have slightly jagged or spiculated borders.

2.4.2 Other imaging modalities

Although mammography still remains the gold standard for breast cancer screening
and diagnosis, it typically cannot differentiate benign from malignant tumors and is
less accurate in patients with dense glandular breasts. Therefore other imaging modal-
ities as Ultrasound and Magnetic Resonance Imaging can be used to further evaluate
mammographic abnormalities in the breast or to distinguish between cystic and solid
masses [Jac90]. It uses transmission of high frequency sound waves and the evaluation
of returning sound to recognize abnormalities in the breast tissue. Because ultrasound
has low sensitivity and specificity, it is not useful for screening.

Magnetic Resonance Imaging is able to differentiate between cancerous and noncancer-
ous tissue because of differing water content and blood flow and can detect tumors missed
by other modalities [GBC01]. For screening MRI is not a useful method, because of its
low specificity and relatively high cost.

7



2.5 Computer aided detection Chapter 2: Background

2.5 Computer aided detection

Although a lot of attention has been directed at technical quality assurance to guaran-
tee optimal mammographic image quality, the quality of mammographic interpretation
seems to be the weakest link in the process. Several review studies have revealed that
observer errors are frequent in breast cancer screening [KOR+04]. Sometimes the radiol-
ogist is not aware of the abnormality or misinterprets the significance of an abnormality.
It is estimated that 20% - 30% of the cancers could be detected in an earlier screening
without an unacceptable increase in the recall rate (i.e., the rate at which mammograph-
ically screened women are recalled for additional assessment) [OKH+05,BWD+00].

Screening for breast cancer is a difficult task, especially due to the high number of normal
cases: less than 1% of the screened women has breast cancer. To help radiologists in
detecting signs of cancer, software has been developed for marking suspicious areas
on mammograms that may indicate the presence of breast cancer. These systems act
only as a second reader and the final decision is made by the radiologist. By using
computer aided detection (CAD) software the number of errors might decrease, both
false negatives (malignant cases that were not recalled) and false positives (cases that
are recalled unnecessarily).

The most commonly used CAD systems detect mass lesions and micro calcifications
by analyzing a single view of the breast. Most of the CAD programs have a two step
procedure to accomplish this. The first step detects suspicious locations inside the
breast area. In the second step the image at these locations is segmented into regions
and several features are calculated for each region. These features are being used to
determine whether a lesion is benign or malignant. They are also used to eliminate false
positive detections.

More advanced CAD systems which currently are under development, are incorporating
information from multiple views. They make use of multiple projections of the breast
and/or views obtained from consecutive screening rounds for modeling the tumor behav-
ior over time. Generally this results in better performance because sometimes a tumor
can be seen on just one projection. Also using views obtained at different time moments
can help to determine if a mass is benign or malign because benign masses tend to change
slowly opposed to malignant masses which may change considerably. Such a CAD sys-
tem has been developed at the UMCN and combines single view and temporal features
into a single malignancy score using a Support Vector Machine classifier [Tim06].

8



2.6 Support vector machines Chapter 2: Background

2.6 Support vector machines

Support Vector Machines (SVMs) have been introduced by Cortes and Vapnik [CV95]
for solving classification tasks and have been successfully applied in various areas of
research. The basic idea of SVM is that it projects datapoints from a given two-class
training set in a higher dimensional space and attempts to find a maximum-margin
separating hyperplane between the data points of these two classes.

The training data for SVMs should be represented as labeled vectors in a high di-
mensional space where each vector is a set of features that describes one case. This
representation is constructed to preserve as much information as possible about features
needed for the correct classification of samples. Features in the case of breast tumor
classification are characteristics such as size, shape, and contrast that are mapped to
real numbers. The type of labels depends on the task. If the task of the SVM is to
correctly predict benign versus malign tumors, labels can be chosen to be −1 for benign
and +1 for malign.

In its simplest form, a SVM attempts to find a linear separator. In practice however,
there may be no good linear separator of the data. In that case, SVMs can project the
dataset to a significant higher dimensional feature space to make the separation easier,
using a kernel function to produce separators that are non-linear.

More formally, using the notation from Burges [Bur98]: Let the datapoints of the dataset
be vectors x1, ..., xn that belong to the feature space F ⊆ Rd, associated with their labels
yi ∈ {−1, 1}, where i = 1, . . . , n. Let Φ be a nonlinear function that maps a datapoint
into a higher dimensional feature space H:

Φ : F 7→ H

More specifically, H is a Hilbert space which is a real or complex vector space of infi-
nite dimension with an inner product 〈·, ·〉 such that H is complete with respect to the
norm |x| =

√
〈x, x〉. Completeness in this context means that every Cauchy sequence

of elements in the space converges to an element in the space. A Cauchy sequence is an
infinite sequence x1, x2, x3, . . . such that for every real number ε > 0 there is a positive
integer N such that for integers m, n > N one has that |xm − xn| < ε. You can think
of a Hilbert space as a generalization of Euclidean space that is complete, separable
and infinite-dimensional. Instead of mapping our data via Φ and computing the in-
ner product, we can do it in one operation, leaving the mapping completely implicit.
Moreover, the kernel function is usually less computationally complex than the map-
ping function Φ which saves a lot of computation. In the literature this is known as the
kernel trick [CV95]. It is called a trick because we do not need to know how the feature
space really looks like, we just need the kernel function as a measure of similarity. The
relationship between the kernel function K and the mapping Φ is defined as follows:
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Φ : R2 → R3
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Figure 2.3: The data is elevated into a higher dimensional space by using a polynomial kernel
function where the data can be discriminated with a hyperplane

K(xi, xj) = 〈Φ(xi),Φ(xj)〉 (2.1)

In practice, we specify K, thereby specifying Φ indirectly, instead of choosing Φ. The
value of K(xi, xj) can be thought of the value of the inner product between xi and xj

after they have been transformed into the higher dimensional feature space.

Although new kernels are constantly being developed by researchers, most SVM books
introduce the following four basic kernels:

Linear : K(xi, xj) = 〈xi, xj〉
Polynomial : K(xi, xj) = (〈γxi, xj〉+ r)d where γ > 0

Radial Basis : K(xi, xj) = e−γ|xi−xj |2 where γ > 0
Sigmoid : K(xi, xj) = tanh(〈γxi, xj〉+ r)

Here, γ, r, and d are kernel parameters. The optimal value of the kernel parameters can
be found using a parameter search which will be explained in Section 4.6.

For the linear kernel, the feature space is exactly the same as the input space. A small
extension to the linear kernel is the polynomial kernel. If d = γ = 1 and r = 0 this
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reduces to the linear kernel. Setting d = 2 results (nearly) in the R to R2 mapping
Φ(x) = (x, x2). The radial basis function was derived from the work in the neural
networks community and the corresponding feature space is a Hilbert space of infinite
dimension. It can be thought of as drawing ‘balls’ around the training vectors. One has
to supply only one parameter, γ, to the radial basis kernel which is the size of these
‘balls’.

Unfortunately there is no theory about deciding which kernel is the best [SS04,Era01],
but a reasonable choice would be to first try a linear kernel and if that does not produce
satisfying results, one could try the radial basis kernel. The radial basis kernel has
only one parameter that needs to be set, unlike the polynomial kernel which has 3.
Furthermore, the linear kernel is a special case of the radial kernel with some parameter
γ [KL03]. Additionally, the sigmoid kernel behaves like the radial kernel for certain
parameters [LL03].

With appropriate nonlinear mapping datapoints into the higher dimension space, and
through use of such kernel functions, SVMs try to identify the optimal hyperplane that
separates the two classes. For a specific projection of a dataset, there can be more than
one separating hyperplane. The optimal one is the one that separates the data with the
maximal margin in order to increase generalization to new data.

SVMs identify the datapoints near the optimal separating hyperplane which are called
support vectors. The distance between the separating hyperplane and the nearest of the
positive and negative datapoints is called the margin of the SVM classifier.

The separating hyperplane is defined as

D(x) = (w · x) + b (2.2)

where x is a vector of the dataset mapped to a high dimensional space, and w and b are
parameters of the hyperplane that the SVM will estimate.

The nearest datapoints to the maximum margin hyperplane lie on the planes

(w · x) + b = +1 for y = +1 (2.3)

(w · x) + b = −1 for y = −1 (2.4)

Therefore, the width of the margin is given by m = 1
||w|| . Computing w and x is then

the problem of finding the minimum of a function with the following constraints:
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Support Vectors

Separating HyperplaneMargin

Origin

w

-b
|w| D(x) = 0

D(x) = 1

D(x) = -1

D(x) > 1

D(x) < -1

Figure 2.4: Linear separating hyperplanes for the separable case.

minimize m(w) =
1
2
(w · w) (2.5)

subject to constraints yi[w · xi + b] ≥ 1 (2.6)
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2.7 Bayesian networks

Bayesian networks are example of so-called probabilistic graphical models [Luc04a,
LvdGAH04, Nea03, Pea88]. A bayesian network B = (G, Θ) represents a joint prob-
ability distribution on a set of random variables X, which consists of two parts: (1) a
qualitative part, represented as a directed acyclic graph (DAG) G = (V,A), with vertex
set V which correspond to the random variables in X, and arc set A which represent the
conditional dependencies between variables; (2) a quantitative part Θ which is a joint
probability distribution defined on random variables X, where there is a one-to-one cor-
respondence between the vertices in V and random variables in X. This is denoted by
XV , where XV ∈ XV is the variable that corresponds to V ∈ V.

2.7.1 Independence

Let XA, XB, XC ⊆ XV be disjoint sets of random variables, and let P be a joint probabil-
ity distribution defined on XV . If P (XA|XB, XC) = P (XA|XB), where P (XB, XC) > 0,
then XA and XC are said to be conditionally independent given XB, which is denoted
logically as

XA ⊥⊥P XC | XB (2.7)

The independence relation can also be represented as a graphical model, where the arcs
represent the dependencies, and absence of arcs represents the (conditional) independen-
cies. Such graphical models can be understood in terms of subgraphs consisting of three
vertices. There are four subgraphs of three vertices A,B, C possible when the direction
of the arcs between A,B and B,C is unspecified and A and C are non-adjacent. These
four possible subgraphs offer the basis for the representation of conditional dependence
and independence in DAGs as illustrated in Figure 2.5. The common cause subgraph,
shown in Figure 2.5(c), illustrates the situation where random variables A and C are
initially dependent, but become independent once random variable B is instantiated.

A ⊥6 ⊥G C | ∅ and A ⊥⊥G C | B (2.8)

The two causal chain subgraphs shown in Figure 2.5(a) and Figure 2.5(b) represent
exactly the same independence information: A and C are conditionally independent
given B which means that given evidence on the value of B, additional evidence on
the value of A does not longer influence the value of C and vice versa. The common
effect subgraph represented in Figure 2.5(d), illustrates the situation where random
variables A and C are initially independent, but become dependent once variable B is
instantiated.

A ⊥⊥G C | ∅ and A ⊥6 ⊥G C | B (2.9)
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C

(a) Causal chain 1

A

B

C

(b) Causal chain 2

B

CA

(c) Common cause

B

CA

(d) Common effect

Figure 2.5: The four possible connections for acyclic directed graph G = (V,A) given vertices
A,B, C ∈ V with arcs (A · · ·B), (B · · ·C) ∈ A where vertices A and C are non-adjacent.

The independence relation between a set of vertices can be determined with the
d-separation procedure. Before giving the definition of d-separation, we have to de-
fine when a path between two vertices is blocked.

Definition 1 (blocked) Let S ⊆ V, and A,B ∈ (V \ S) be distinct vertices, which are
connected to each other by the trail τ .1 Then τ is said to be blocked by S if one of the
following conditions is satisfied [FL04]:

• K ∈ S appears on trail τ , and the arcs of τ meeting at K constitute a causal chain
or common cause connection;

• K 6∈ S, none of K’s descendants are in S, and the arcs meeting at K on trail
τ constitute a common effect connection, i.e., if K appears on the trail τ then
neither K nor any of its descendants occur in S.

The notion of d-separation, where the ‘d’ stands for dependence, uses this notion
of blocking taking into account that vertices can be connected by more than one
trail [FL04]:

Definition 2 (d-separation) Let G = (V,A) be a directed acyclic graph, and let
A,B,S ⊆ V be disjoint sets of vertices. Then A and B are said to be d-separated
by S, denoted by A ⊥⊥d

G B | S, if each trail τ in G between each A ∈ A and each
B ∈ B is blocked by S; otherwise, A and B are said to be d-connected by S, denoted
by A ⊥6 ⊥d

G B | S.
1A trail in a graph is a sequence of edges such that any two successive edges in the sequence share a

vertex and where all edges and vertices are distinct.
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Figure 2.6: Schematic illustration of d-separation in a Bayesian network
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We use an example taken from [FL04] to give a notion of d-separation. The vertices Z
and P are connected by the following three trails:

• τ1 =©Z →©X →©W ←©P ,

• τ2 =©Z →©X →©W →©Q ←©P , and

• τ3 =©Z →©X →©W →©R →©T ←©Q ←©P .

The trail τ1 is blocked by S = {X, Y} since Y does appear on this trail and the arcs on
τ1 meeting at X form a causal chain. Because X blocks τ2 and τ3, we conclude that S
d-separates Z and P.

However, neither S ′ = {Y, W} nor S ′′ = {Y, T} block trail τ1, because X → W ← P is
a common effect connection, W ∈ S ′ and T is a descendent of vertex W which occurs
in S ′′; it also participates in a common effect connection with respect to τ3. Therefore
not every trail between Z and P in graph G is blocked by S ′ and S ′′ which consequently
means that Z and P are d-connected by S ′ or S ′′.

It is not always the case that in a graphical model all independence information is repre-
sented, and it may also not be the case that all dependence information is represented.

Let ⊥⊥P be an independence relation defined on XV for joint probability distribution P ,
then for each XA, XB, XC ⊆ XV , where XA, XB, XC are disjoint, we say that:

• G is an undirected dependence map, D-map for short, if
XA ⊥⊥P XB | XC ⇒ A ⊥⊥G B | C

• G is an undirected independence map, I-map for short, if
A ⊥⊥G B | C ⇒ XA ⊥⊥P XB | XC

• G is an undirected perfect map, P-map for short, if
A ⊥⊥G B | C ⇔ XA ⊥⊥P XB | XC

This means for example that in a D-map each independence encoded in the joint prob-
ability distribution P has to be represented in graph G. Also each dependence encoded
by graph G has to represented in the joint probability distribution P , because it also
holds that XA ⊥6 ⊥P XB | XC ⇒ A ⊥6 ⊥G B | C for D-maps.

In I-maps, each independence in graph G has to be consistent with the joint probability
distribution P . Also each dependence relationship encoded in the joint probability
distribution P has to be present in graph G. Clearly, a perfect map is just a combination
of a D-map and I-map. By definition, Bayesian networks are directed I-maps. Since the
complexity of conditional probability distributions is heavily dependent on the number of
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parents a variable has, sparseness allows for a factorized and thus compact representation
of a joint probability distribution.

As mentioned earlier, the set of arcs A describes the dependence and independence
relationships between groups of vertices in V corresponding to random variables XV . If
a joint probability distribution P admits a recursive factorization then P can be defined
on the set of random variables XV as follows:

P (XV) =
∏
V ∈V

P (XV |Xπ(V )) (2.10)

where Xπ(V ) denotes the set of parents of XV in graph G. Equation 2.10 implies that a
joint probability distribution over a set of random variables can be defined in terms of
local joint probability distributions P (XV |Xπ(V )).

We use the example [Hus04] shown in Figure 2.7 with the

D

CB

A

E

Figure 2.7: A simple
Bayesian network

set of vertices V = {A,B, C, D, E} and the set of arcs A =
{(A,B), (A,C), (B,D), (C,D), (D,E)} to explain the factor-
ization rule 2.10.

Vertex A does not have any parents, vertices B and C are
children of vertex A, and the parent of vertex D. Vertex D has
one child, vertex E. Applying Formula 2.10 will then lead to
the following factorization

P (A,B, C, D, E) = P (A)P (B|A)P (C|A)P (D|B,C)P (E|D)

Less formally, the arcs go from a parent node to a child node
which intuitively indicates that the parent directly influences
the child, and that these influences are quantified by condi-
tional probabilities. To capture the joint probability distrib-
ution, one must specify a conditional probability distribution
at each node in a Bayesian network. If the variables are dis-
crete, this can be represented as a conditional probability table,
which lists the probability that the child node takes on each of
its different values for each combination of values of its parents.

2.7.2 Bayesian inference

To infer means to make a prediction based on knowledge and experience. Suppose we
have a bag with thousand balls that are either red or blue, but we have no idea what
percentage of the balls are which color. We are interested in how likely it is that we will
pull a red ball out of the bag. In order to do that, we have to take a substantial sample
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from the bag and count how many balls are red and how many balls are blue. We take
hundred balls out of the bag, and come to the conclusion that 28% of the balls were
red and 72% were blue. Without having to count all thousand balls, we can infer that
28% of the balls will be red. With Bayesian inference, we also can use prior knowledge.
If we, for example, know from qualitative sources that 25% of the balls are red, we can
incorporate that knowledge into the model.

When we have a Bayesian network with the associated conditional probability tables
and observed nodes in the network (i.e., feature or evidence nodes), we want the abil-
ity to infer the probabilities of values for a certain node. This problem is NP-hard.
However, there are several exact and approximate inference algorithms available to ac-
complish that task. If you have P (XV) then every probability can be calculated with
the marginalization rule as follows:

P (XV ′) =
∑
V\V ′

P (XV) (2.11)

=
∑
V\V ′

∏
V ∈V

P (XV |Xπ(V ))

2.7.3 Practical example

We continue by giving a very well known and more practical example from [LS88]. He
introduced a fictitious expert system representing the diagnosis of a patient presenting
to a chest clinic, having just come back from a trip to Asia and showing dyspnoea
(shortness of breath). The doctor considers that possible causes are tuberculosis, lung
cancer, and bronchitis, including the possibility that none of them or more than one of
them is the cause for dyspnoea. Additional relevant information include whether the
patient has recently visited Asia (where tuberculosis is more prevalent) and whether or
not the patient is a smoker (which increases the chances of lung cancer and bronchitis).
A positive X-ray would indicate either tuberculosis or lung cancer. A graphical model
for the underlying process is shown in the Figure 2.8. Each node in a Bayesian network
has an associated conditional probability table, of which one is shown partially to the
left of node Dyspnoea.

If we learn the fact that a patient is a smoker, we will adjust our beliefs regarding lung
cancer and bronchitis (i.e., the risks have increased). However, our beliefs regarding
tuberculosis will be unchanged, because tuberculosis is conditionally independent of
smoking given the empty set of variables. A positive X-ray result will affect our beliefs
regarding tuberculosis and lung cancer, but not our beliefs regarding bronchitis (i.e.,
bronchitis is conditionally independent of X-ray given smoking). However, had we
also known that the patient suffers from shortness-of-breath, the X-ray result would
also have affected our beliefs regarding bronchitis (i.e., bronchitis is not conditionally
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Figure 2.8: An example Bayesian network ‘Asia’

independent of X-ray given smoking and dyspnoea).

2.7.4 Learning Bayesian networks

Many of the Bayesian networks developed in the medical environment have been con-
structed by hand, based on medical background knowledge. Much help is needed of
medical experts to manually construct a Bayesian network and turns out to be very
time consuming in practice. A lot of data has been collected and maintained in the
breast screening programme. This data collection contains highly valuable informa-
tion about the relationships between measured variables which can be used to learn
the structure and the parameters of a Bayesian network. The quality of the learned
Bayesian Network depends on the quality of the dataset because any bias introduced in
the dataset will have impact on the resulting Bayesian network. To allow for reliable
identification of independencies among the variables, a large amount of cases are needed
in the dataset. To further increase the performance of the network, medical background
knowledge of the breast cancer domain can be incorporated.

Learning a Bayesian network from data involves two steps: learning the graphical struc-
ture and learning the parameters [CBL97, LB94, Luc04a, Luc04b]. Structure learning
algorithms are explained in Section 4.7.1. After we learned the structure of the Bayesian
network, we have to determine the associated conditional probability distributions. An
important distinction is whether all the variables are observed, or whether some of them
are unavailable. If all the variables are observed the goal of learning with a Maximum
Likelihood Estimator is to find the parameter values of each CPD which maximize the
likelihood of the training data. The likelihood value is a measure of goodness, i.e.,

19



2.7 Bayesian networks Chapter 2: Background

how well the distribution fits the observed data. Given a training set D = {d1, . . . , dn}
where each di assigns values to all the variables {x1, . . . , xk} in X and a Bayesian net-
work B = (G, Θ). We further assume that the instances in the dataset are independent
given Θ. This is

P (D|Θ) =
n∏

i=1

P (di|Θ) (2.12)

and that the instances are identically distributed. We use the notation xq
p to denote the

variable xp in instance dq. The log-likelihood of Θ given D can be defined as

LL(Θ|D) =
n∑

i=1

log(P (di|Θ)) (2.13)

=
n∑

j=1

k∑
i=1

log P (xj
i |π(xj

i ),Θi) (2.14)

where π(xj
i ) are the parents of xi in instance dj . This criterion measures the likelihood

that the dataset D was generated from the given model B. The higher this value is, the
closer B is to modeling the probability distribution in dataset D. The parameters that
maximizes the log-likelihood for a given network structure can then be defined as

ΘML = arg max
Θ

LL(Θ|D) (2.15)

If we have unobserved nodes or hidden nodes, we can rely on the expectation maximiza-
tion algorithm (EM). In short, it calculates the expected value of the hidden node and
uses that value for further calculations. Informally, the algorithm starts with randomly
assigning values to all the parameters to be estimated. It then iteratively alternates
between two steps: an expectation (E) step, and a maximization (M) step.

In the E-step, it computes the expected likelihood value for the complete data where the
expectation is taken with respect to the estimated conditional distribution of the hidden
variables given the most recent settings of the parameters and the observed data. In the
M-step the parameters are updated by maximizing the expectation of the distribution
obtained in the E-step.

We can repeatedly do the E-step and M-step until the likelihood converges, i.e., reaches
a local maxima. It is proven that the distance between the real distribution and the
estimated distribution decreases with every step. The whole expectation maximization
(EM) procedure is explained in detail in [MK97].
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Figure 2.9: (a) Näıve Bayesian network and (b) tree-augmented Bayesian network

2.8 Bayesian classifiers

In this section, P (X = x), where the uppercase X is a random variable and the lowercase
x is the instantiation of that random variable, is abbreviated to P (x). Using the learning
methods explained in the previous section we can generate a Bayesian network B, with
an arbitrarily complex topology. We can then use the generated model in a way that
given a set of features {f1, f2, . . . , fn}, the Bayesian network B returns label c that
maximizes the posterior probability PB(c|f1, f2, . . . , fn). It is important to note that
the learning methods explained in the previous section do not distinguish the class
variable from other attributes. The learning methods do not know we are evaluating
the learned network on predictive performance of the class variable.

Although general Bayesian network structures may be used for classification tasks this
may be computationally inefficient since the classification node is not explicitly identified
and not all of the structure may be relevant for classification, since parts of the structure
lie outside of the classification node’s Markov blanket.

As described by Pearl [Pea88], a Markov blanket of a vertex M is the set of M ’s children,
M ’s parents and the parents of the M ’s children in a given network structure G. In the
example shown in Figure 2.7, the Markov blanket of vertex A is the set B,C, the Markov
blanket of vertex B is A,C, D, the Markov blanket of vertex C is A,B, D, and so on.
This set has the property that, conditioned on M ’s Markov blanket, M is independent
of all other variables in the network.

So, if one does not care about the quality of the underlying probability distribution
and only want to classify with Bayesian networks, often networks of limited topology
are being used. These topologies are shown in Figure 2.9 where a distinction is made
between feature variables fi and a class variable c. Normally this kind of Bayesian
networks have better classifying performance, because the quality of the network is only
based on PB(c|f1, f2, . . . , fn) (i.e., its predictive accuracy). Another reason why these
networks are popular for classification is that learning näıve Bayesian classifiers (see
Figure 2.9(a)) can be done in linear time which is far less computationally expensive
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than learning complex Bayesian networks.

Given a set of feature variables {f1, f2, . . . , fn}, we construct the posterior probability
for the event c.

Using Bayes’ rule:

P (c|f1, f2, . . . , fn) =
P (c)P (

∧n
i=1 fi|c)

P (
∧n

i=1 fi)

where P (c|
∧n

i=1 fi) is the posterior probability that F belongs to c. The denominator
which is the marginal probability of

∧n
i=1 fi can be defined as

P (
n∧

i=1

fi) =
k∑

j=1

P (
n∧

i=1

fi|cj)P (cj)

Alternatively, P (
∧n

i=1 fi) can be seen as a normalizing constant α which can be calcu-
lated, realizing that

k∑
j=1

P (cj |
n∧

i=1

fi) =
k∑

j=1

αP (cj)P (
n∧

i=1

fi|cj) = 1

where P (cj) and P (
∧n

i=1 fi) is known.

To dramatically simplify the classification task we can use the following simplifying
assumption: each feature fi is conditionally independent of every other feature fj for
i 6= j. This fairly strong assumption of independence leads to the name näıve Bayes,
with the assumption often being näıve in that, by making this assumption, the algorithm
does not take into account dependencies that may exist. Two events A and B are said
to be independent if the occurrence of event A makes it neither more probable nor less
probable that event B occurs and vice versa. When A and B are independent, learning
the value of B gives us no information about A and vice versa. Formally, we can denote
this as P (A|B) = P (A) and P (B|A) = P (B).

By using the conditionally independence assumptions we can express the joint proba-
bility model as

P (
n∧

i=1

fi, c) = P (c)
n∏

i=1

P (fi|c)

The model in this form is much more manageable, since it factors into a so-called class
prior probability P (c) and independent probability distributions P (fi|c). These class
conditional probabilities P (fi|c) can be calculated separately for each variable which
reduces complexity enormously.
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Figure 2.10: Schematic illustration of a latent classification model with 5 features and 2 latent
variables.

Classification using this Bayes’ probability model is done by picking the most proba-
ble hypothesis which is also known as the maximum a posteriori. The corresponding
classifier function can be defined as follows:

classify(f1, f2, . . . , fn) = arg max
c

P (c|f1, f2, . . . , fn)

Even with such strong simplifying assumptions, it does not seem to greatly affect the
posterior probabilities, especially in regions near the decision boundaries which leaves
the classification task unaffected. [DP97] shows that such näıve Bayesian classifiers yield
surprisingly powerful classifiers. An extension to the näıve Bayes model is the tree-
augmented näıve Bayes model where each feature node can have one correlation edge
pointing to it as shown in Figure 2.9(b). [FGG97] shows that this network again could
outperform a näıve Bayesian network (see Figure 2.9(a)). There are also other exten-
sions possible, one of them is a forest-augmented Bayesian network (FAN) where arcs
are allowed between feature variables as long as they form a forest of trees [Luc04b].
Recently, a new set of models for classification have been introduced termed latent
classification models. They can be seen as a combination of the näıve Bayes model
with latent (i.e., hidden) variables that encode the conditional dependencies among fea-
tures [SSGS06,LN05]. Standard algorithms such as structural EM [Fri98] can be used
to discover the structure of a latent model and the parameters of the latent variables
can be learned by the EM algorithm. Other, more sophisticated latent models integrate
a mixture of factor analyzers into the näıve Bayes model to relax the conditional in-
dependence assumptions of the original näıve Bayes model. A graphical example of a
latent classification model is shown in Figure 2.10.

Although the variables in a Bayesian network are often assumed to be discrete, a network
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may also include continuous variables that adopt a value from a range of real values
[Lau92, Ole93]. Often, the conditional probability distributions for such continuous
variables are assumed to be Gaussian, or normal, distributions. These distributions
then are specified in terms of a limited number of parameters, such as their means
and variances. Unfortunately, many real world features are not normal distributed and
therefore we have to transform such variables to an approximately normal distribution
when possible.

2.9 Bias-variance decomposition

If a model is constructed by a learning method using a sample taken from a given
domain, and the model is being used to make predictions then some predictions are
false. Bias-variance decomposition [DKS95] is an useful method for the analysis of
learning problems because it distinguishes between different kind of prediction errors:

1. the bias error, a systematic component in the error associated with the learning
method and the domain

2. the variance error, a component associated with differences in models between
samples

3. an intrinsic error component associated with the inherent uncertainty in the do-
main

If the bias is high, the model is underfitting the data which means that it is not complex
enough to capture the underlying structure of the data. It is known that näıve Bayes can
underfit the data when using it for highly complex datasets. High variance error indicates
varying, unstable predictions and is associated with overfitting. If a classification method
overfits the data, the predictions for a single instance will vary between samples. This is
a serious problem of support vector machines and Bayesian networks and occurs when
the models describe the instances in the training set better and better but get worse
and worse on new instances of the same phenomenon, i.e., the model will fit the noise
in the training data which means poor generalization to new data. This can render the
whole learning process worthless.

Each type of error requires a different strategy of error reduction. To reduce bias one
could increase the representational power of the learning algorithm. Using a smaller
fraction of the training data can decrease the variance error [DK95].

One of the simplest and most widely used means of avoiding overfitting and thus de-
creasing the variance error is to divide the data into two sets: a training set and a test
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set. In order to avoid wasting data and to eliminate the possibility that the test set with
randomly chosen instances could be just lucky (e.g. contain much ’easy’ instances), we
use the cross-validation technique explained in the next section.

Note that there is often a bias-variance tradeoff. Usually if one increases the number of
degrees of freedom in the learning algorithm, the bias shrinks but the variance increases
which leads to overfitting. The optimal number of degrees of freedom is then the number
of degrees of freedom that optimizes this trade off between bias and variance.

2.10 Cross Validation

The performance of the developed support vector machines and Bayesian networks will
be measured by using cross-validation where a set of available feature measurements
and output classifier is divided into two parts: one part for training and one part for
testing. In this way several different Bayesian networks, all trained on the training set,
can be compared on the test set. The basic steps of cross-validating are as follows:

• Divide the data into N sets

• Make N Bayesian networks, each one trained on N − 1 of the sets

• Test the Bayesian network on the remaining set

This is called N -fold cross validation. A schematic illustration of a 5-fold cross-validation
is given in Figure 2.11. The idea behind it is that averaging the test error of all N
Bayesian networks will give a good estimate of the true error on any randomly chosen
Bayesian network [Koh95].

One of the clear advantage of cross-validation is that all data is used for training and
testing, but the disadvantage is that it takes much computational work to make so many
networks. An extreme variation of cross validation is the leave-one-out method, where
one case is taken out for testing and the rest of the data is used to learn the Bayesian
network. However, one of the dangers of this leave-one-out method is the chance of
overfitting because one uses a very large amount of cases to train the network. After
the cross-validation one selects the best performing network and restarts the learning
process.
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Net 1

Net 2

Net 3

Net 4

Net 5

Test set

Training set

Figure 2.11: Schematic illustration of a 5-fold cross-validation

2.11 ROC Analysis

To evaluate the constructed systems, the classification performance of each system has to
be measured. Often the performance of a system cannot be described by a single value.
A good example of this is given by Gilbert [Gil84] 100 years ago, when he explained
the exceptionally high “accuracy” a fellow meteorologist claimed in the prediction of
tornados. He pointed out that because the actual frequency of tornados was so low,
this high accuracy could be achieved by simply saying that there is no tornado each
day. Therefore it is crucial to describe the performance by two or more values. Often
these values are complementary, which means that if one value is being optimized the
other one will become worse. In a Receiver Operator Characteristics (ROC) curve the
sensitivity, which in this study is the share of malign tumors that is correctly classified,
is plotted against 1-specificity, the share of benign tumors that is falsely classified, for
different cut values.

Often the ROC analysis is used to find an optimal cut value, sometimes referred to
as criterion, for use in decision-making. By changing the cut value of the system it
is possible to achieve the optimal balance between sensitivity and specificity that is
needed for a certain purpose. If the cost of not detecting a particular disease is very
high to society, for example a highly contagious disease, one could change the cut value
to achieve a very high sensitivity, but consequently lower specificity.

This technique is now widely used in the field of biomedical research and has become a
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Tumor marked as malign Tumor marked as not malign

Tumor classified as malign True Positives (TP) False Positives (FP)

Tumor classified as not malign False Negatives (FN) True Negatives (TN)

Table 2.1: Relationship between TP, TN, FP, and FN

golden standard in performance measuring.

The following four values are calculated when comparing the classifier output of the
constructed systems with the real labels that were determined by biopsy:

• True Positives (TP): Tumors marked as malign which were also classified as tumor.

• True Negatives (TN): Tumors which were not marked as malign, and that were
also not classified as malign.

• False Positives (FP): Tumors which were not marked as tumor, but were classified
as tumor.

• False Negatives (FN): Tumors which were marked as tumor, but which were not
classified as tumor.

The relationship between these four values is shown in Table 2.1.

Based on these four values, relative measurements can be calculated:

Sensitivity is the ratio of tumors which were marked and classified as tumor, to all
marked tumors

SE =
TP

TP + FN
(2.16)

Specificity is the ratio of tumors which were not marked and also not classified as tumor,
to all unmarked tumors

SP =
TN

FP + TN
(2.17)

The total area under the ROC-curve, often referred to as the Az value, is a measure
of the classification performance since it reflects the test performance at all possible
cut-off levels. The area lies in the interval [0.5, 1] and the larger this area, the better
the performance of the classification. In this work the Az value will be used to compare
the results of the SVM classifiers and Bayesian classifiers.

In experiments, there is usually only a finite set of points on the ROC-curve. Therefore
it is only possible to find a good approximation of the area under the curve. It is obvious
that the more points there are, the better estimate of the curve and area we get. There
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Figure 2.12: (a) Likelihood of a tumor being benign relative to malign and (b) their ROC curves

are several ways to calculate the area under a ROC curve. First, the trapezoidal rule can
be used but gives an underestimation of the area. Second, it is possible to get a better
approximation of the curve by fitting the data to a binormal model using curve-fitting
software with maximum-likelihood estimates. After that it is possible to get a good
estimate of the area. Because we have a considerable amount of points we will use the
first method to estimate the area under the curve.

The two normal distributions in Figure 2.12(a) show the benign tumor and the malign
tumor distributions. The horizontal axis represents the level of certainty that the tumor
is malign. When a system has difficulty detecting whether a tumor is benign or malign,
the two distributions will overlap considerably, see curve A in Figure 2.12(b). The Az

value of curve A is 0.5 which is the worst performance one can get. Curve C has the
smallest overlap which results in a near perfect performance with an Az value of almost
1.0.
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3
Dataset

In the UMCN there are huge quantities of clinical data available. The digitized mam-
mograms that are going to be used in this project have been obtained from the Dutch
Breast Cancer Screening Program. In this program two mammographic views of each
breast were obtained in the initial screening: the medio-lateral oblique (MLO) view,
which is a side view taken at an angle, and a cranio caudal (CC) view, which is a
top to bottom view. At subsequent screenings only a MLO was obtained, unless there
was an indication that CC views could be beneficial. In Figure 3.1 we summarize the
information about the dataset. In total we had 536 cases, 238 benign and 227 malig-
nant. In about one half (265) of the cases there was only a MLO or CC view available.
In the other half (271) there was both a MLO and CC view available. In some cases
however the mass was not visible on the CC view. Reasons include location near the
chest, obscuration of the mass lesion due to dense tissue and very subtle lesions. In our
experiments, we will only use the MLO/CC pairs including the ones where the mass
was not visible on the CC view.

536 cases

272 benign 264 malign

271 view pairs

261
MLO and CC pair

8
MLO pairs

2
CC pairs

265 single views

Figure 3.1: Description of the dataset
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3.1 Shape and texture based features

For every digitized mammogram, a certain number of suspected regions have been indi-
cated. For every region, specific features such as size, shape, and spiculation have been
calculated. In total there are 81 different features calculated for each region. In this
project only a subset of 12 features out of 81 features is being used. Each of these 12
features is being described in the following sections.

3.1.1 Stellate patterns

Malignancies tend to have a greater density than that of normal breast tissue. Generally,
malignant mammographic densities are often surrounded by a radiating pattern of linear
spicules.

For the detection of these stellate patterns of straight lines directed toward the center
pixel of a lesion, two features have been designed by Karssemeijer and te Brake [KtB96].
The idea is that if an increase of pixels pointing to a given region is found then this
region may be suspicious, especially if, viewed from the that region, such an increase is
found in many directions.

The first feature f1 is a normalized measure for the fraction of pixels with a line orien-
tation directed towards the center pixel. We call this set of pixels F. For calculating the
second feature f2 the circular neighborhood is divided into 24 angular sections. This
feature measures to what extent the pixels in set F are uniformly distributed among all
angular sections. Also the mean values of f1 and f2 inside the region are included in
the subset.

3.1.2 Region Size

Most breast tumors are about 2 cm2 in size. Regions with a similar size are more likely
to represent mass lesions than regions with a much smaller or larger size. This feature
captures this difference.

3.1.3 Compactness

Compactness represents the roughness of an object’s boundary relative to its area. Com-
pactness (C) is defined as the ratio of the squared perimeter (P ) to the area (A), i.e.,

C =
P 2

A
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The smallest value of compactness is C = (2πr)2

πr2 = 4π = 12.5664 which is for a circle. As
the circle deviates towards a more complicated shape, the compactness becomes larger.

In our dataset this feature is normalized by dividing the compactness by 4π, which
results in the following simple formula:

C ′ =
P 2

4πA

3.1.4 Linear Texture

Normal breast tissue often has different texture characteristics than tumour tissue.
Therefore Karssemeijer and te Brake [KtB96] have developed a texture feature that
tries to find linear structures inside the segmented area because they often indicate the
presence of normal breast tissue.

3.1.5 Relative Location

The relative location of a lesion is important since most malignancies (45%) develop in
the upper outer quadrant [CAAB98] of the breast toward the armpit. Therefore some
features have been constructed that represent the relative location of a lesion using a new
coordinate system [VTK06] (see Figure 3.2). This new coordinate system is different
for MLO and CC views. In MLO views the pectoral edge is used as the y-axis. The
x-axis is determined by drawing a perpendicular line on the y-axis where the distance
between the y-axis and the breast boundary is maximum. We assume that at the end
of this line the nipple is located. In CC views the chest wall is used as y-axis. A point is
selected on the breast boundary that is most distant to the chest wall. We assume that
the nipple is located at this point. Then a perpendicular line to the y-axis which passes
through the nipple is defined as x-axis. In this new coordinate system we calculate the
x- and y-location of the selected peak and normalize with the effective radius of the

breast r =
√

A
π , where A is the size of the segmented breast area to allow the known

positions of the cancers on the mammograms to be compared.

3.1.6 Maximum Second Order Derivate Correlation

This border feature indicates the smoothness of the contour and is especially useful to
discriminate between benign and malignant lesions. Most benign lesions have a well-
defined contour and the margins of these lesions are sharply confined with a sharp
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Figure 3.2: New coordinate system

transition between the lesion and the surrounding tissue which indicates that there is
no infiltration [VTK06].

3.1.7 Contrast

Regions with high contrast or a higher intensity than other similar structures in the
image is likely to be a mass. According to te Brake [tB00] it is an useful feature to
remove false positive signals.

3.1.8 Number of Calcifications

The presence of clustered micro calcifications is one of the most important signs of
cancer on a mammogram and occur in about 90% of the non-invasive cancers, see also
Section 2.2.2. Therefore this feature represents the number of calcifications.
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3.2 Statistical analysis

For every feature global statistics have been calculated which can be seen in Table 3.1.
Besides the fundamental statistical characteristics mean and standard deviation, two
other characteristics have been calculated: skewness and kurtosis. Skewness is a measure
of the lack of symmetry. A data set is symmetric if it looks the same to the left and
right of the center point. The skewness for a normal distribution would be zero, and any
symmetric data should have a skewness near zero. Kurtosis is a measure of whether the
data are peaked or flat relative to a normal distribution. The kurtosis for a standard
normal distribution is three.

Mean Std dev Min Max Skewness Kurtosis
Benign (cases: 258)
Stellate Patterns 1 1.1256 0.1710 0.7800 2.1400 2.3002 13.4307
Stellate Patterns 2 1.0241 0.1160 0.8300 2.1900 4.7815 44.8670
Stellate Patterns 1 Mean 1.1189 0.1316 0.8600 1.5630 0.8565 3.6986
Stellate Patterns 2 Mean 1.0215 0.0713 0.8380 1.2990 0.5482 3.6256
Region Size 0.4070 0.3915 0.0200 3.4510 3.0272 17.9799
Contrast 0.5502 0.2558 0.1260 2.0110 1.9986 9.8575
Compactness 1.2141 0.0906 1.0470 1.5600 0.9308 3.8448
Linear Texture 0.1750 0.1444 0.0130 1.0240 2.2365 10.1391
Relative Location X 0.6705 0.3024 -0.0670 1.5470 0.0470 2.7819
Relative Location Y 0.2160 0.4262 -0.9680 1.2990 -0.2289 2.4769
Max. 2nd order Drv Corr. 0.6800 0.1008 0.4520 0.9060 0.0436 2.3011
Number of Calcifications 0.7871 2.6723 0.0000 19.0000 3.8831 19.2635

Malignant (cases: 274)
Stellate Patterns 1 1.2273 0.1730 0.8200 1.7300 0.5060 3.0005
Stellate Patterns 2 1.0827 0.0965 0.7900 1.3500 0.1468 2.8634
Stellate Patterns 1 Mean 1.2357 0.1736 0.8290 1.7740 0.6844 3.1281
Stellate Patterns 2 Mean 1.0868 0.0946 0.8530 1.4140 0.4533 3.0175
Region Size 0.4471 0.3272 0.0160 1.8040 1.2728 4.4259
Contrast 0.6272 0.2777 0.0110 1.5090 0.7688 3.2074
Compactness 1.2111 0.0983 1.0410 1.7080 1.5022 6.3482
Linear Texture 0.1578 0.1161 0.0040 0.9490 2.2258 11.5829
Relative Location X 0.6130 0.3046 -0.0710 1.3080 0.0140 2.3298
Relative Location Y 0.2080 0.4449 -0.9770 1.2180 -0.2483 2.7594
Max. 2nd order Drv Corr. 0.6354 0.0951 0.4040 0.9320 0.1608 2.9336
Number of Calcifications 2.0645 6.7471 0.0000 50.0000 4.4524 25.7707

Table 3.1: Statistics of benign and malign cases in the dataset
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4
Methods

4.1 Equipment and Software

The Bayesian inference and learning algorithms described in this report were imple-
mented in Matlab version 7.1 (Mathworks Inc) using the functions of the open-source
Bayes Net Toolbox (BNT) written by Kevin Murphy [Mur01]. Additionally, functions
from the BNT Structure Learning Package from Philippe Leray [Ler04] were used to
extend BNT’s structure learning functionality. Some of these algorithms were modified
and extended by the author of this report. The support vector machine experiments
were implemented in R 2.2.0 [GI05], a free software environment for statistical com-
puting and graphics which is similar to the S language and environment which was
developed at Bell Laboratories. The test runs were performed on a Athlon64 2.2 GHz
machine with operating system Windows XP equipped with 1,5 GB RAM.

4.2 Preprocessing

Many Bayesian learning algorithms that deal with continuous nodes are based on the
assumption that the features are gaussian distributed. Unfortunately, some of the fea-
tures do not follow a normal distribution, as can be seen in Table 3.1. A strategy to
make non-normal data resemble normal data is by using appropriate transformations.
We will follow the commonly used two-stage transformation scheme introduced by Har-
ris and DeMets [HD72]: first remove skewness, then adjust for remaining non-gaussian
kurtosis. One particularly useful transformation algorithm to remove skewness is the
Box-Cox power transformation [BC64].
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Figure 4.1: An example Box-Cox transformation: (a) histogram of a feature that is Weibull
distributed, (b) normality plot of the feature, (c) histogram of the transformed feature, and (d)
normality plot of the transformed feature

4.2.1 Box-Cox transformation

The Box-Cox power transformation is a transformation from y to y(λ) with parameter
λ and especially works if the probability distribution of a feature can be described as a
function which contains powers, logarithms, or exponentials:

y(λ) =

{
yλ−1

λ if λ 6= 0
ln y if λ = 0

(4.1)

The assumption made by this transformation is that y(λ) follows a normal linear model
with parameters β and σ2 for some value of λ.
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Notice that this transformation is essentially yλ for λ 6= 0 and ln y for λ = 0, but has
been scaled to be continuous at λ = 0. Useful values of λ can often be found in the
range [−2, 2]. If we do not consider the scaling factors, −1 is the complement, 0 is the
logarithm, 0.5 is the square root, 1 is the identity and 2 is the square.

Given a value of λ, we can estimate the lin-
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Figure 4.2: Box-Cox normality plot for choos-
ing optimal λ

ear model parameters β and σ2 as usual,
except that we work with the transformed
variable y(λ) instead of y. To select an ap-
propriate transformation we need to try val-
ues of λ in a suitable range. We did this
by using the Box-Cox normality plot which
underlying technique is based on the nor-
mal probability plot. The normal probabil-
ity plot is a graphical technique to deter-
mine whether data is approximately nor-
mally distributed. The data is plotted
against a theoretical normal distribution in
such a way that the points should form an
approximate straight line as shown in Fig-
ure 4.1(d). Deviations of this straight line
means that the data is less normally distrib-
uted as shown in Figure 4.1(b). In the Box-
Cox normality plot we use that property:
the correlation coefficient of the normality
plot is plotted against a range of λ’s. The lambda resulting in the largest correlation
coefficient is the optimal one, in Figure 4.2 the optimal λ is 0.2726. Instead of trying
each λ in a certain range, we use the well-known divide and conquer technique [Man89]
to search much more efficiently through the search space.

4.2.2 Manly transformation

Manly [Man76] proposed a modification of the Box-Cox transformation which also allows
negative values:

y(λ) =

{
eλy−1

λ if λ 6= 0
y if λ = 0

(4.2)

It was reported successful in transforming unimodal distributions and should not be used
for bimodal or U-shaped distributions. Because our dataset contains negative values and
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the experimental results of Manly’s exponential transformation were slightly better than
the Box-Cox transformation, we use this particular method to remove skewness.

4.2.3 John and Draper modulus function

To adjust the remaining non-gaussian kurtosis on symmetric data we use the John and
Draper modulus function [JD80]:

y(λ) =

{
sign(y) (|y|+1)λ−1

λ if λ 6= 0
sign(y) ln(|y | +1) if λ = 0

(4.3)

where

sign(y) =

{
1 if y ≥ 0
−1 if y < 0

(4.4)

which is a modified power transformation applied to each tail separately. Non-negative
powers λ less than 1 reduce kurtosis, while powers greater than 1 increase kurtosis.
Again, we can use a divide and conquer approach for estimating the optimal λ. If y is
symmetric around 0, then the modulus transformation will change the kurtosis without
introducing skew. If y is not centered at 0, we add a constant before applying the
modulus transformation.
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4.2.4 Transformation Results

A small subset of the features did not perform well when transformed. The Stellate
Pattern Mean features and the Maximum Second Order Derivate Correlation feature are
approximately normal distributed in their original form and therefore not transformed
with above functions. Also the Number of Calcifications feature was not an useful
candidate to transform, because of its discrete nature. Statistical information about the
transformed dataset is found in Table 4.1.

Mean Std dev Min Max Skewness Kurtosis
All cases (cases: 532)
Stellate Patterns 1 0.5159 0.0358 0.4213 0.6297 0.2462 2.4515
Stellate Patterns 2 0.4702 0.0942 0.3497 0.6307 0.0765 1.1293
Stellate Patterns 1 Mean 1.1790 0.1655 0.8290 1.7740 0.8638 3.5949
Stellate Patterns 2 Mean 1.0551 0.0903 0.8380 1.4140 0.6548 3.4349
Region Size 0.2148 0.0883 0.0156 0.3891 0.0256 1.9484
Contrast 0.3608 0.0929 0.0109 0.6034 -0.0056 2.7369
Compactness 0.2079 0.0046 0.2026 0.2132 0.0031 1.0123
Linear Texture 0.0957 0.0421 0.0040 0.2052 0.2835 2.5912
Relative Location X 0.6451 0.3107 -0.0709 1.6145 0.0832 2.6490
Relative Location Y 0.2497 0.4623 -0.8520 1.6288 0.0676 2.6064
Max. 2nd order Drv Corr. 0.6571 0.1005 0.4040 0.9320 0.1290 2.5924
Number of Calcifications 1.4446 5.2303 0.0000 50.0000 5.4429 39.8079

Benign (cases: 258)
Stellate Patterns 1 0.5083 0.0354 0.4213 0.6297 0.3459 2.5813
Stellate Patterns 2 0.4655 0.0922 0.3552 0.6307 0.0729 1.1252
Stellate Patterns 1 Mean 1.1166 0.1300 0.8600 1.5630 0.8740 3.8136
Stellate Patterns 2 Mean 1.0209 0.0718 0.8380 1.2990 0.5485 3.6036
Region Size 0.2064 0.0881 0.0195 0.3891 0.1922 1.9876
Contrast 0.3472 0.0873 0.1137 0.6034 0.2267 2.8038
Compactness 0.2079 0.0046 0.2028 0.2132 0.0035 1.0120
Linear Texture 0.0970 0.0432 0.0125 0.1982 0.1914 2.3855
Relative Location X 0.6665 0.3151 -0.0669 1.6145 0.1278 2.8950
Relative Location Y 0.2488 0.4574 -0.8452 1.6288 0.0391 2.4780
Max. 2nd order Drv Corr. 0.6774 0.0988 0.4520 0.9050 0.0325 2.3345
Number of Calcifications 0.7901 2.6820 0.0000 19.0000 3.8744 19.1856

Malignant (cases: 274)
Stellate Patterns 1 0.5231 0.0347 0.4309 0.6065 0.2068 2.3569
Stellate Patterns 2 0.4747 0.0960 0.3497 0.6188 0.0691 1.1125
Stellate Patterns 1 Mean 1.2375 0.1737 0.8290 1.7740 0.6660 3.1044
Stellate Patterns 2 Mean 1.0871 0.0941 0.8530 1.4140 0.4737 3.0384
Region Size 0.2227 0.0879 0.0156 0.3817 -0.1293 1.9925
Contrast 0.3736 0.0962 0.0109 0.5793 -0.2382 2.8535
Compactness 0.2079 0.0046 0.2026 0.2132 0.0028 1.0126
Linear Texture 0.0945 0.0411 0.0040 0.2052 0.3745 2.8285
Relative Location X 0.6252 0.3057 -0.0709 1.3560 0.0262 2.3481
Relative Location Y 0.2505 0.4677 -0.8520 1.4580 0.0923 2.7135
Max. 2nd order Drv Corr. 0.6380 0.0986 0.4040 0.9320 0.2313 2.9313
Number of Calcifications 2.0571 6.7482 0.0000 50.0000 4.4613 25.8653

Table 4.1: Statistics of benign and malign cases after transformation
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Figure 4.3: The posterior marginal distribution of two features before and after the normality
transform

In Figure 4.3 we show the posterior marginal distribution for the Stellate Pattern 1
and the Region Size feature, before and after the normality transformation. The his-
togram displays the actual distribution of the observed feature. The expected normal
distribution with the calculated mean and variance is projected over this histogram as
a blue curve. The expected mean and variance of the original Stellate Pattern 1 feature
are calculated as 1.1780 and 0.1796, respectively. After transformation they are calcu-
lated as 0.5159 and 0.0358. We use the Shapiro-Wilk W Test in the JMP statistical
package [Inc05] to measure the goodness of the fit. When transformed, the goodness
of the expected normal distribution increases with 4%, from 93% to 97%. The Region
Size feature follows an approximately exponential distribution. The expected mean and
variance of the original feature are calculated as 0.4277 and 0.3607, respectively. When
transforming this feature to a normal distribution, the expected mean and variance are
calculated as 0.2148 and 0.0833 and the goodness of the fit increases with 13%, from
82% to 95%.
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4.3 Discretizing

As discussed in the previous section, our continuous features are not normal distributed.
In order to overcome this problem, another approach would be discretizing the features.
Although we will loose some information in the process, it is shown in several papers that
näıve Bayes performs well with discretized data [DKS95, YW03a,YW02a]. A number
of discretization methods have been developed and each have their advantages and
disadvantages. A selection of the available methods have been implemented and their
strategy will be explained in the following subsections.

4.3.1 Equal Width Discretization (EWD)

EWD [DKS95] is one of the simplest discretization techniques. This method sorts the
values v of each feature into ascending order from vmin to vmax into k equally sized
intervals. Each interval has width w = (vmin − vmax)/k and the cutpoints are at
vmin + w, vmin + 2w, · · · , vmin + (k − 1)w. k is a parameter supplied by the
user.

Let us now show how this works on the continuous stellate pattern 1 feature in the
non-discretized dataset depicted in Table 4.2.

Instance Features Class
stellate pattern 1 stellate pattern 2

1 1.23 1.03 benign
2 1.22 1.11 malign
3 1.60 1.28 malign
4 1.04 1.00 malign
5 1.11 0.97 malign
6 1.19 1.07 malign
7 1.06 1.01 benign
8 1.12 1.04 benign
9 1.17 1.08 malign
10 1.14 1.05 malign
11 0.80 0.83 benign
12 1.12 0.98 malign
13 1.11 1.03 malign
14 1.32 1.13 malign
15 1.20 1.03 benign

Table 4.2: Small part of the UMCN dataset with two continuous attributes

If we choose k = 5 then vmin = 0.80, vmax = 1.60, and w = (1.60− 0.80)/5 = 0.16. The
resulting intervals (often called bins) are shown in Table 4.3.
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Intervals [0.80,0.96] (0.96,1.12] (1.12, 1.28] (1.28, 1.44] (1.44,1.60]
SP1 feat. 0.80 1.04 1.06 1.11 1.11 1.17 1.19 1.22 1.23 1.60

1.12 1.12 1.14 1.20 1.32

Table 4.3: Equal Width Discretization of the Stellate Pattern 1 (SP1) feature

4.3.2 Equal Frequency Discretization (EFD)

EFD [DKS95] divides the sorted values into k intervals containing approximately the
same number of training instances. Thus each interval contains n/k adjacent (possibly
identical) values where k is a parameter supplied by the user.

As an example let us go back to the stellate pattern 1 feature from Table 4.2. If we
choose k = 5 and the number of instances is n = 15 then n/k = 15/5 = 3. The resulting
intervals can be found in Table 4.4.

Intervals [0.80,1.06] [1.11,1.12] [1.14,1.17] [1.19,1.22] [1.23,1.62]
SP1 feat. 0.80 1.04 1.06 1.11 1.11 1.12 1.12 1.14 1.17 1.19 1.20 1.22 1.23 1.32 1.62
Instances 3 4 2 3 3

Table 4.4: Equal Frequency Discretization of the Stellate Pattern 1 (SP1) feature

Although EWD and EFD are rather simplistic discretization methods, they are often
used and work surprisingly well for näıve Bayes classifiers according to [HHW00].

4.3.3 Proportional k-Interval Discretization (PKID)

PKID [YW01] adjusts the size of the intervals (i.e., the number of instances in an
interval) and therefore also the number of them proportional to the number of training
instances. The idea behind that strategy is to adjust the discretization bias and variance
to achieve a lower classification error. Discretization bias is the discretization error that
results from the use of a particular discretization strategy. Variance measures how
sensitive the discretization strategy is to changes in the data. Discretization bias and
variance are directly related to interval size and number. The larger the interval size,
the smaller the interval number, the lower the variance but the higher the bias. The
opposite is also true: the smaller the interval size, the larger the interval number, the
lower the bias but the higher the variance [YW02a].

The inverse relationship between interval size s and interval number t is trivial and can
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be calculated as follows:

s× t = n

s = t (4.5)

where n is the number of instances in the dataset.

As you can see, PKID gives equal weight to discretization bias and variance reduction
by setting the interval size equal to the interval number (s = t ≈

√
n). Furthermore,

the interval size and number are both proportional to the training data size. One flaw
of the PKID method is that for small training sets it forms intervals small in size which
might not present enough data for reliable probability estimation, hence resulting in
high variance and poorer performance of the näıve Bayes classifier.

4.3.4 Non-Disjoint Discretization (NDD)

The idea behind NDD is that it works with overlapping intervals. [YW02b,YW02a] show
that calculating the probability estimation of a continuous value vi which is assigned
to an interval (ai, bi] is more reliable if the vi falls towards the middle of the interval
instead of close to either ai or bi.

Given a continuous feature for which there are n training instances with known values,
the desired interval size s and the desired interval number t are calculated in the same
way as the PKID strategy (see Equation 4.5), NDD forms t′ atomic intervals of the form
(a′1, b

′
1], (a

′
2, b

′
2], · · · , (a′t′ , b′t′ ] each with frequency equal to s′, so that

s′ =
s

α
s′ × t′ = n (4.6)

where α is any odd number and does not vary. For simplicity, we will take α = 3.

One interval is formed for each set of three consecutive atomic intervals, such that the
kth (1 ≤ k ≤ t′ − 2) interval (ak, bk] satisfies ak = a′k and bk = b′k+2. An illustration of
this can be found in Figure 4.4.
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(a’ , b’  ]3 3 (a’ , b’  ]t t(a’ , b’  ]1 1 (a’ , b’  ]2 2 (a’ , b’   ]t-2 t-2 (a’ , b’   ]t-1 t-1
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(a’ , b’  ]4 4 ‘ ‘ ‘ ‘‘ ‘

Figure 4.4: The actual intervals are formed out of three consecutive atomic intervals. For
example, a value that falls into the atomic interval (a3, b3] will be assigned to the interval
(a′

2, b
′
4].

A value v will then be assigned to the interval (a′i−1, a
′
i+1] where i is the index of the

atomic interval which contains v. Using this method ensures that v always falls towards
the middle of the interval, except when i = 1 in which case v is assigned to the interval
(a′1, b

′
3], and when i = t′ in which case v is assigned to (a′t′−2, b

′
t′ ].

4.3.5 Weighted Proportional k-Interval Discretization (WPKID)

WPKID [YW03b] is the improved version of PKID and provides a solution for the PKID
problem of the possible insufficient data in a single interval. For smaller datasets, dis-
cretization variance reduction has a bigger impact on näıve Bayes performance than
discretization bias [Fri97]. This strategy weights discretization variance reduction more
than bias for small training sets by setting a minimum interval size to make the prob-
ability estimation more reliable. It calculates s and t in a slightly different way than
PKID, where s is the interval size and t is the number of intervals:

s× t = n

s−m = t

m = 30 (4.7)

The minimum interval size m is set to 30 because this is the minimum sample from
which one should draw statistical inferences [YW02a].
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4.4 Dimensionality Reduction

One might think that the use of more features will automatically improve the classifica-
tion power of the classifier. However the number of samples needed per feature increases
exponentially with the number of features to maintain a certain level of accuracy. This
is better known as the curse of dimensionality which is a significant obstacle in machine
learning problems that involve learning from few data samples in a high-dimensional
feature space [Fri97].

For example, let the feature space be 24 dimensional, i.e., F = {f1, f2, . . . , f24} and
every feature fi has a domain Di. Suppose that each domain Di ⊆ R is discretized into
6 intervals Di,1, . . . , Di,6 then the domain

Ω =
∏

1≤i≤24
j∈{1,...,6}

Di,j

has 624 cells which is, in general, much more than the available training samples. Con-
sequently most cells do not contain observations. It is therefore a good choice to use
dimensionality reduction to overcome this problem.

The general philosophy behind dimensionality reduction techniques is that many real life
datasets contain (linear) redundancies and noise. The following techniques will produce
a lower-dimensional representation that approximates the original high-dimensional fea-
tures and suppress the noise and remove redundancies. These methods will be used as
a preprocessing step for classification.

4.4.1 Principal Component Analysis (PCA)

One of the most well-known dimension reduction techniques is Principal Component
Analysis (PCA) [DHS01]. The success of PCA is partially due to its simplicity. The
assumption made in PCA is that most of the information is carried in the variance of
the features: the higher the variance in one dimension (feature), the more information
is carried by that feature. The general idea is therefore to preserve the most variance in
the data using the least number of dimensions.

We will explain the steps that have to be taken for doing PCA analysis using the
covariance method using a small example dataset shown in Figure 4.5(a):

1. Organize the dataset into column vectors, so you end up with a m × n matrix,
where m is the number of dimensions (features) and n is the number of cases.
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2. Subtract the mean from each of the dataset dimensions, so that each dimension
has zero mean. We call the resulting dataset D.

x y
0.5 0.2
2.8 3.0
1.3 1.4
2.8 2.5
2.7 2.4
0.8 0.9
1.6 1.4
1.9 2.2

(a)

x y
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1.00 1.25
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Figure 4.5: First step of the PCA algorithm: (a) original data, (b) data with the means
subtracted, and (c) plot of the means subtracted data.

3. Calculate the covariance matrix from D. Since the non-diagonal elements in this
covariance matrix are positive, we should expect that both the x and y variable
increase together.

cov =
(

0.8286 0.8200
0.8200 0.8743

)
4. Calculate the eigenvectors and eigenvalues of the covariance matrix. Since the

covariance matrix is square, the eigenvectors and eigenvalues can be calculated.

eigenvalues =
(

0.0311
1.6717

)
eigenvectors =

(
−0.7169 −0.6972
0.6972 −0.7169

)
5. Once eigenvectors are found from the covariance matrix, the next step is to order

them by eigenvalue, highest to lowest. This gives you the components in order
of significance, in our case the second column of the eigenvectors is the one with
the highest corresponding eigenvalue (1.6717). The eigenvector with the highest
eigenvalue is the principle component of the dataset. See also Figure 4.6.

6. Select the desired number of components (one can decide to ignore the components
of lesser significance to reduce dimensionality).

component =
(
−0.6972
−0.7169

)
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7. Construct the new dataset by transposing the selected components vector and
multiplying it with the mean-adjusted dataset, transposed.

FinalDataset = RowEigenV ectors×RowMeanAdjustedDataset

=
�
−0.6972 −0.7169

�
×
�
−1.3000 1.0000 −0.5000 1.0000 0.9000 −1.0000 −0.2000 0.1000
−1.5500 1.2500 −0.3500 0.7500 0.6500 −0.8500 −0.3500 0.4500

�

=
�
2.0175 −1.5933 0.5995 −1.2349 −1.0934 1.3065 0.3903 −0.3923

�
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Figure 4.6: Normalized data (means subtracted) with the eigenvectors of the covariance matrix
overlayed.

One major drawback of PCA is that it can eliminate the dimension that is best for dis-
criminating positive cases from negative cases, because it is an unsupervised algorithm.
Suppose the data are spread parallel on each side of the linear separator, then it is easy
to see that the discriminating dimension will be eliminated.
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4.4.2 Fisher Discriminant Analysis (FDA)

For a classification task FDA is often preferred above PCA because it incorporates
class information. FDA tries to find a mapping from the high-dimensional space to
a low-dimensional space (the so called Fisher space) in which the most discriminant
features are preserved. It accomplishes this by minimizing the variation within the same
class and maximizing the variation between classes [DHS01]. This can be expressed in
mathematical terms as follows.

Consider that each case in the learning set belongs to one of n classes (C1, C2, . . . , Cn).
The between-class scatter matrix SB and within-class scatter matrix SW can be defined
as:

SB =
n∑

i=1

mi(µi − µ)(µi − µ)T (4.8)

and

SW =
n∑

i=1

∑
xk∈Ci

(xk − µi)(xk − µi)T (4.9)

where µ is the reference class mean, µi is the mean of class i, mi is the number of cases
and the superscript T indicates a transpose action.

The objective of FDA is then to find Wopt maximizing the ratio of the between-class
scatter to the within-class scatter:

Wopt = arg max
W

|W T SBW |
|W T SW W |

(4.10)

Finding the maximum Wopt could be tricky, but fortunately it is known that the solu-
tion can be found relatively simple: Wopt is the solution of the following conventional
eigenvalue problem:

SBW − λSW W = 0 (4.11)

where λ is a diagonal matrix whose elements are the eigenvalues. The column vectors
wi(i = 1, . . . ,m) of matrix W are eigenvectors corresponding to the eigenvalues in λ.

If FDA is used as a preprocessing step to reduce the dimension of the initial feature
space, the dimension of the resulting subspace can only be reduced to no more than
c− 1, where c is the number of classes. Because we have only 2 classes, i.e., benign and
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malign, the resulting dataset can only be a one-dimensional space, known as the Fisher
linear discriminant, which is heavily inadequate for our classification problem.

Therefore Duchene and Leclercq [DL88] has proposed some tricks to effectively use this
dimension reduction technique which was implemented in Matlab by Roger Jang. The
whole DCPR (Data Clustering and Pattern Recognition) Toolbox by the same author
is available at [Jan06].

4.5 Scaling

Scaling the features before applying SVM is of significant importance [ER04]. One of the
main advantages of scaling is that features in greater numeric ranges do not dominate
those in smaller numeric ranges. Because SVM kernels usually depend on the inner
products of feature vectors, large values can cause numerical problems. By scaling,
numerical difficulties will be avoided. We will calculate the scaling parameters of the
training dataset and scale the training and test dataset with the same scaling parameters.
The following paragraphs will discuss centering and the three scaling methods we have
used [EJKW+01].

Centering

The most basic, but important preprocessing step is to center the multidimensional
feature vector x̂. For every column xi ∈ x̂, the column mean 1

n

∑n
i=1 xi is subtracted

from every value in that column to make x̂ a zero-mean variable.

Standardizing

Standardizing is scaling based on the variability of the values. This is done by dividing
the columns by their sample standard deviation to obtain a standard deviation of 1. The
sample standard deviation for a column is obtained by Equation 4.12. If the columns
are centered, dividing the columns by their sample RMS (Equation 4.13) gives the same
result because the mean is zero.

s =

√√√√ 1
n− 1

n∑
i=1

(xi − x̄)2 (4.12)
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RMSsample =

√√√√ 1
n− 1

n∑
i=1

x2
i (4.13)

Range scaling

An other approach of scaling is transforming the range of each feature in the training
set to [−1,+1] range. The range of the scaled test set can however be slightly different,
because the training set does not have to contain the actual minimum and maximum
value of the column vector. This is not a big problem, as there is no requirement that
the input data for the support vector machine should be within that range. The scaling
is done with the following formula:

xi =
(

2
max(x̂)−min(x̂)

· x̂
)
−

(
max(x̂) + min(x̂)
max(x̂)−min(x̂)

)
for every xi ∈ x̂ (4.14)

In our specific application, this scaling method gave an average decrease of 5% in per-
formance (AUC) in comparison with the scaling based on variance.

Class-Specific scaling

The last method we used is the Class-Specific scaling which incorporates class label
information. It attempts to increase the influence of features that are likely to be
predictive by increasing the range of its data points. A feature is predictive when that
feature has small variance but significantly different means in the positive and negative
classes. This scaling is accomplished by applying the following formula:

xi =
mean(x̂+)−mean(x̂−)

var(x̂+) + var(x̂−)
for every xi ∈ x̂ (4.15)

where x̂+ and x̂− represent the feature vector for the positive and negative class in-
stances respectively. Using this scaling method as a preprocessing step on our dataset
did improve the support vector machine classifier accuracy, but not as much as the
standardizing method.
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4.6 SVM Model Selection

In Section 2.6 there are four common kernel functions mentioned from which we have
to choose one for the classification task. Generally, the radial kernel is a reasonable
choice when the relation between class labels and attributes is nonlinear. Furthermore,
the linear kernel with a cost parameter C is a special case of the radial kernel with
some parameters (C, γ) [KL03]. Additionally, the sigmoid kernel behaves like the radial
kernel for certain parameters [LL03]. Because the radial kernel has less parameters than
the polynomial kernel, the complexity of model selection is significantly lower.

When using the radial kernel, two parameters have to be provided: misclassification
cost C and kernel width γ. Which C and γ are best for a certain problem is not known
beforehand, therefore some model selection (i.e., parameter search) has to be done. In
the e1071 library [DHL+05], there exists a function tune.svm which does a grid-search on
these parameters using 10-fold cross-validation where all pairs (C, γ) are tried and the
one with the best cross-validation accuracy is selected. Obviously this greedy search has
a high computational cost. Consequently several heuristic methods have been designed
to lower computational cost by, for example, approximating the cross-validation rate.
However, we chose to do a grid-search without heuristics and reduce the time by first
using a coarse grid as can be seen in Figure 4.7(a). After identifying the best region
on the grid, we will search that region with a finer grid (Figure 4.7(b)) to finetune the
values.
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Figure 4.7: Kernel parameter tuning
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4.7 Building the Bayesian Networks

Manually constructing a Bayesian network turns out to be very time consuming in
practice, therefore several techniques have been developed for automatically learning
Bayesian networks from clinical data. Learning a Bayesian network consists of two tasks,
namely learning the structure (i.e., identifying the topology of the network) and learning
the parameters (i.e., determining the conditional probability distributions). There are
several existing learning algorithms available for Bayesian networks that offer a good
starting point [CH91,CBL97,LB94].

Besides fully automatic learning, fragments of causal background knowledge can be used
to guide the learning process. The causal background knowledge could be provided by
the Radiology department as it already has a lot of experience in building classifiers for
this problem domain.

4.7.1 Structure Learning

The first but rather näıve idea to find the best network structure is to choose the struc-
ture that has the best score of all possible graphs. The number of different structures
for a Bayesian network with n nodes is super exponential and can be calculated with
the following formula [Rob77]:

r(n) =
n∑

i=1

(−1)i+1

(
n

i

)
2i(n−i)r(n− i) = n2O(n)

This gives r(1) = 1, r(2) = 3, r(3) = 25, r(5) = 29, 281 and r(10) w 4.2 · 1018.

If the number of nodes exceeds 8, such exhaustive search can’t be done in a reasonable
time and therefore structure learning methods often use search heuristics. They often
make use of operators like arc-insertion and arc-deletion and compare resulting graphs
by their score (a calculated value for how well a graph explains the data) in order to
choose the next best step.

The two most popular scorings algorithms are the Bayesian score [CH91,Hec95] which
integrates out the parameters, i.e., it is the marginal likelihood of the model, and the
BIC score [Nea03], which is the sum of a likelihood term and a penalty term which
penalize complex networks.

For this project we will evaluate several structure learning algorithms to learn complex
topologies and structures with a very limited topology such as näıve Bayes (NB) and
the tree augmented network (TAN). In the next sections we will briefly explain the used
algorithms.
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• NB (Näıve Bayes)
• TAN (Tree Augmented Network)
• MWST (Maximum Weighted Spanning Tree)
• K2 (initialized with a random ordering of the nodes)
• K2+T (initialized with ordering returned by MWST)
• K2-T (initialized with reverse ordering returned by MWST)
• MCMC (Markov Chain Monte Carlo)

Näıve Bayes

The näıve Bayesian classifier [LIT92] is a simple Bayesian classification algorithm. It
assumes that every feature is independent from the rest of the features given the state
of the class variable. As a result its structure only contains edges from the class node
to the other features in order to simplify the joint distribution.

Tree Augmented Network

Unlike the näıve Bayes network, the tree augmented Bayesian network (TAN) [Gei92]
also allows edges between evidence variables as long as they form a tree. This approach
approximates the interactions between attributes and could theoretically lead to better
classification performance. The best tree relying all the observations can be obtained
with the MWST algorithm.

Maximum Weight Spanning Tree

[CL68] have proposed a method based on the maximum weight spanning tree algorithm
(MWST). This method associates a weight to each edge. This weight can be either
the mutual information between the two variables or the score variation when one node
becomes a parent of the other. When the weight matrix is created, an usual MWST
algorithm gives an undirected tree that can be oriented with the choice of a root.

K2

The main idea of the K2 algorithm is to maximize the structure probability given the
data. It assumes there is an ordering available on the variables which means that if Xa

comes before Xb, then Xb cannot be a parent of Xa, which is used to reduce the size
of the search space. The search space becomes the subspace of all the directed acyclic
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graphs admitting this order as topological order. It further assumes that, a priori, all
structures are equally likely. In the next paragraph we explain how the algorithm works.

The parent set for a node Xa is initially set to the empty set. Then the algorithm
greedily adds the node, from among the predecessors in the ordering, to the parent set
that increases the probability of the resultant network by the largest amount. It stops
when there are no more parents to add or if no parent addition improves the network
score.

The main problem with K2 is that it is a greedy algorithm. The K2 algorithm requires
a good ordering on the nodes to be given as input to perform well. In this study we
also use the MWST algorithm first to find a good ordering on the nodes, as this tends
to lead to better results than just giving a random ordering as input.

MCMC

Markov chain Monte Carlo methods, hereafter called MCMC, are a class of algorithms for
sampling networks from the posterior distribution. The Metropolis-Hastings algorithm
is the MCMC algorithm that is implemented in the BNT toolbox [Mur01] to search
the space of all DAGs. The basic idea is to use the Metropolis-Hastings algorithm to
draw samples from P (D|G) (see Section 2.7.4) after a chosen burn-in time. Then a
new graph G′ is kept if the Bayes factor P (D|G′)

P (D|G) (i.e., the ratio between the marginal
likelihood of the new model to the marginal likelihood of the previous model) increases.
The quality of the sample improves as a function of the number of steps, until the
distribution of simulated values converges to the true posterior distribution. A more
detailed explanation of the Metropolis-Hastings algorithm is given in [CG95].

4.7.2 Gaussian Mixture Model (GMM)

Gaussian mixture models [Ver04] belong to the class of pattern recognition systems.
They are easy to implement and model the probability density function1 of observed
variables using a multivariate Gaussian mixture density and have been applied to medical
image classification problems before [PG04,PCH+00,TS05].

The Gaussian probability density function in one dimension is a bell shaped curve defined
by two parameters, mean µ and variance σ2. In a d-dimensional space it is defined as

p(x̄|µ̄,Σ) =
exp

(
−1

2(x̄− µ̄)T Σ−1(x̄− µ̄)
)

(2π)
d
2 | Σ |

1
2

(4.16)

1The probability density function (or pdf) of a random variable is the relative frequency of occurrence
of that random variable. The area under the pdf is exactly one.
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Figure 4.8: (a) An example surface of a two-dimensional Gaussian pdf with µ̄ = [0; 0] and
Σ = [1.56,−0.97,−0.97, 2.68] and (b) is an example surface of a two-dimensional Gaussian
mixture pdf with three components: α1 = 0.40, µ̄1 = [−2.5;−2],Σ1 = [0.81, 0; 0, 1.44], α2 =
0.25, µ̄2 = [0.5; 1.5],Σ2 = [1.30,−0.66;−0.66, 1.30] and α3 = 0.35, µ̄3 = [2.0;−0.5],Σ3 =
[0.69, 0.61; 0.61, 2.36].

where µ̄ is the mean vector and Σ the covariance matrix. See Figure 4.8(a) for an
example (taken from [DHS01]).

In some cases approximation of the posterior probability by a single Gaussian might
be too simple; a better approach would be using a Gaussian mixture model which is a
mixture of several Gaussian distributions and assume that the entire data set can be
modeled by a M -gaussian mixture probability density function. This probability density
function is defined as a weighted sum of Gaussians:

p(x̄|Θ) =
M∑

m=1

αm p(x̄|µ̄m,Σm) (4.17)

where M is the number of Gaussian components, αm is the prior probability (i.e., mixing
weight) of component m, 0 < αm < 1 for all components, and

∑M
m=1 αm = 1. Θ is the

parameter list {α1, µ̄1,Σ1, . . . , αM , µ̄M ,ΣM}. An example of a Gaussian mixture model
is shown in Figure 4.8(b) (taken from [DHS01]).

During the training phase, we select all vectors that belong to a given class and learn
the parameters of the Gaussian mixture, such as the mixing weights, the mean vectors,
and the diagonal covariance matrices that maximizes the likelihood function. The stan-
dard algorithm to find the optimal Θ is the expectation maximization (EM) procedure,
explained in detail in [MK97].
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Recall that the posterior probability can be computed with the Bayes rule

P (Ck|x̄) =
p(x̄|Ck)P (ck)

p(x)
(4.18)

where P (Ck|x̄) is the probability density function of class Ck in the feature space, and
P (ck) is the a priori probability which is the probability of the class before measuring
any features, and p(x) is merely a scaling factor to assure that posterior probabilities
are really probabilities lying between 0 and 1.

Once the Gaussian mixture parameters have been found for each class, assigning a
test vector to a class is straightforward. A test vector x̄ is assigned to the class that
maximizes P (C|x̄).
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5
Results

In this chapter, we evaluate the algorithms and techniques described in the previous
chapters to learn Support Vector Machines and Bayesian Networks and use them to
classify breast tumors.

5.1 Image based performance

In this section we use our real-world dataset described in Section 3 with 522 instances,
each with 12 continuous features. Every MLO view has a corresponding CC view in the
dataset. In the following experiments we will be measuring the image based performance
and therefore do not make a distinction between the views, which means we use the same
Bayesian network or support vector machine for classifying the MLO and CC view. The
process is shown schematically in Figure 5.1.
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Figure 5.1: Schematic illustration of testing the image based performance
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In the first experiment we constructed a number of Bayesian networks with different
structure learning algorithms. We classified with the constructed Bayesian networks
using a 10-fold cross validation scheme. The classification was performed 5 times and
averaged to compute the final classification accuracy. The learning time per fold is
denoted in the fourth column, and the BIC score (see Section 4.7.1) in the fifth col-
umn gives an indication of the quality of the learned network where higher is better.
Both Bayesian networks with limited topology, Naive Bayes (NB) and Tree Augmented
Networks (TAN), performed very well compared to the more sophisticated Bayesian
networks in terms of classification performance and they are considerably faster than
K2 and MCMC. The tree search method (MWST) gives the worst performance for our
dataset. The different initializations for the K2 algorithm has a noticeable impact on the
performance. K2 uses a random ordering on the nodes, K2+T uses the ordering from
the MWST algorithm, and K2-T uses the reverse ordering from the MWST algorithm.
For learning with the MCMC algorithm we used a burn-in of 10% of the desired amount
of samples. We have not put any restriction on the maximum fan in and fan out (in-
coming and outgoing arcs). The overall quality of the Bayesian networks learned with
the MCMC algorithm is better when using a considerable amount of samples, but the
achieved classification performance does not surpass the simple networks NB and TAN.
Furthermore the MCMC algorithm is the slowest structure learning algorithm, especially
when using 500 or more samples. We also see that a high Bayesian network quality does
not necessarily guarantee a good classification performance, which is throughout this
thesis the most important evaluation measure.

Structure Algo. Az value T BIC
NB 0.7315 ± 0.0008 [0.7301;0.7316;0.7318;0.7319;0.7320] 3 -313.767
TAN 0.7413 ± 0.0023 [0.7390;0.7393;0.7412;0.7422;0.7447] 18 552.469
MWST 0.7092 ± 0.0035 [0.7037;0.7077;0.7110;0.7115;0.7121] 20 685.025
K2 0.7303 ± 0.0046 [0.7235;0.7280;0.7310;0.7339;0.7349] 101 737.863
K2+T 0.7208 ± 0.0015 [0.7182;0.7205;0.7215;0.7217;0.7220] 134 829.274
K2-T 0.7345 ± 0.0081 [0.7411;0.7310;0.7250;0.7309;0.7446] 122 736.032
MCMC (n=100) 0.7266 ± 0.0074 [0.7154;0.7238;0.7274;0.7326;0.7337] 58 466.582
MCMC (n=500) 0.7299 ± 0.0040 [0.7260;0.7274;0.7276;0.7341;0.7343] 205 728.434
MCMC (n=1000) 0.7202 ± 0.0112 [0.7104;0.7158;0.7163;0.7188;0.7394] 330 872.148

Table 5.1: Area under ROC curve results for different structure learning methods using 10-fold
cross-validation, averaged over five times. T is the structure learning time per fold in seconds.
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5.2 Image based performance SVM kernels

In the next experiment we test the different SVM kernels as described in Section 2.6.
For every kernel we used the default parameters and compared them to the tuned
parameters. The tuning of the SVM kernel parameters using a grid search is discussed
in Section 4.6. Except for the sigmoid kernel, the default parameters perform well
and do not differ significantly from the tuned parameters. The results are shown in
Table 5.2. Due to the computational complexity of searching the four optimal kernel
parameters for the polynomial kernel, we have not been able to find these parameters.
As expected, the radial kernel achieved the best classification performance and is chosen
for the experiments hereafter, using the default kernel parameters.

Kernel Az value
Linear (default) 0.7346 ± 0.0010 [0.7329;0.7346;0.7346;0.7352;0.7356]

Linear (tuned) 0.7401 ± 0.0031 [0.7369;0.7374;0.7396;0.7425;0.7439]

Polynomial (default) 0.7103 ± 0.0026 [0.7078;0.7089;0.7099;0.7102;0.7145]

Polynomial (tuned) n/a
Radial (default) 0.7729 ± 0.0008 [0.7719;0.7721;0.7732;0.7736;0.7736]

Radial (tuned) 0.7779 ± 0.0009 [0.7762;0.7771;0.7777;0.7779;0.7784]

Sigmoid (default) 0.5113 ± 0.0029 [0.5090;0.5092;0.5099;0.5125;0.5159]

Sigmoid (tuned) 0.7338 ± 0.0009 [0.7327;0.7334;0.7334;0.7347;0.7348]

Table 5.2: Area under ROC curve results for different kernels with and without parameter tuning
using 10-fold cross validation, averaged over 5 times. The default kernel parameters are C = 1,
γ = 1/(data dimension), r = 0, and d = 3. The cost parameter of the tuned linear kernel is
C = 0.03125, the kernel parameters of the tuned radial kernel are C = 0.6, γ = 0.075, and the
kernel parameters of the tuned sigmoid kernel are C = 0.0078125, γ = 0.5.

5.3 SVM (radial) vs Bayesian (NB, TAN) performance

Based on the results of the above experiments we felt that it was reasonable to use the
radial kernel for learning Support Vector Machines and Naive Bayes and Tree Augmented
Networks for learning Bayesian networks in the upcoming experiments.

We conduct the following three groups of experiments to evaluate the classification
performance:

1. Image based performance test
2. Case based performance test using averaging
3. Case based performance test combining features
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As previously explained, the image based performance test does not make a distinction
between MLO and CC views in contrast to case based performance. The outcome of the
image based experiments are summarized in Table 5.3. The first case based performance
test we conducted averages the classifier output of the MLO view with the classifier
output of the corresponding CC view, which is schematically shown in Figure 5.2. We
essentially combine information from multiple images of the same patient. We have
tried four ways to combine the classifier outputs: taking the average, the median, the
maximum, and the minimum. We found that the average always produced an improved
area under the ROC curve (Az value) compared to the single view images. Using the
minimum or maximum could potentially lead to better results in some situations, if for
example the mass is seen only in the MLO or CC view, but for our images in the dataset
it had a negative effect on the Az value. This also confirms the observations of [LMJ04].
In the second case based performance we combine both views to one case. Because there
are 12 features per view available this extends to 24 features per case (see Figure 5.3).
Using this extended dataset with 261 instances results in the classification performances
shown in Table 5.5.

5.3.1 Image based

Technique Az value
SVM 0.7962 ± 0.0012 [0.7945;0.7957;0.7966;0.7967;0.7975]

NB 0.7315 ± 0.0008 [0.7301;0.7316;0.7318;0.7319;0.7320]

TAN 0.7413 ± 0.0023 [0.7390;0.7393;0.7412;0.7422;0.7447]

GMM 0.7678 ± 0.0019 [0.7650;0.7669;0.7683;0.7687;0.7699]

Table 5.3: Area under ROC curve results for image based classifier, 10-fold cross validation,
averaged over 5 times.

5.3.2 Case based MLO and CC averaging

As one would expect, we see a significant improvement in classification performance for
all classifier types in comparison with the image based performance tests (Table 5.4).
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Figure 5.2: Schematic illustration of testing the case based performance by averaging the classifier
output of both views

Technique Az value
SVM 0.7985 ± 0.0023 [0.7967;0.7968;0.7977;0.7989;0.8023]

NB 0.7667 ± 0.0032 [0.7627;0.7647;0.7666;0.7688;0.7707]

TAN 0.7617 ± 0.0043 [0.7559;0.7587;0.7628;0.7646;0.7665]

GMM 0.7685 ± 0.0104 [0.7652;0.7653;0.7785;0.7791;0.7543]

Table 5.4: Area under ROC curve results for MLO and CC averaged classifier using 10-fold cross
validation, averaged over 5 times.
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5.3.3 Case based MLO and CC features combined

As can be seen in Table 5.5, the performance of the SVM classifier is a bit lower compared
with the averaging method. This confirms our beliefs that a larger number of features
negatively effects the SVM performance. On the other side, naive Bayes performs better
with the combined feature sets. Contrary to our intuition the TAN classifier gives worse
results than the naive Bayes classifier in the case based performance tests.
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Figure 5.3: Schematic illustration of testing the case based performance by combining the fea-
tures of both views

Technique Az value
SVM 0.7926 ± 0.0030 [0.7881;0.7915;0.7927;0.7951;0.7955]

NB 0.7672 ± 0.0027 [0.7631;0.7661;0.7678;0.7691;0.7698]

TAN 0.7428 ± 0.0067 [0.7337;0.7385;0.7452;0.7457;0.7509]

GMM 0.7499 ± 0.0312 [0.7114;0.7258;0.7540;0.7718;0.7866]

Table 5.5: Area under ROC curve results for MLO and CC combined classifier using 10-fold
cross validation, averaged over 5 times.

5.4 Transformation results

We observed in Section 3.2 that the real world dataset we are using contains a lot of
features that do not follow a normal distribution. Bayesian networks with continuous
nodes assume that within each state of the class the observed continuous features follow
a normal (Gaussian) distribution. These continuous features have two parameters, mean
and variance, to describe the normal distribution. Transformation methods have been
designed to transform the non-normal features closer to a normal distribution. In this
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experiment we have tested three transformation methods described in Section 4.2 to
determine if the case based classification performance of the naive Bayes network would
increase after transformation. The Box-Cox and Manly transformation methods, which
primarily remove skewness, have a significantly positive impact on the performance.
Applying the John & Draper method to remove additional kurtosis introduced too much
skewness and reduced the accomplished performance. The results are summarized in
Table 5.6.

Technique Az value
Box-Cox 0.7743 ± 0.0060 [0.7650;0.7731;0.7757;0.7763;0.7814]

Manly 0.7876 ± 0.0028 [0.7851;0.7853;0.7865;0.7906;0.7906]

Manly + JohnDraper 0.7649 ± 0.0039 [0.7601;0.7628;0.7641;0.7676;0.7700]

Table 5.6: Area under ROC curve results of the näıve Bayes models when using different methods
for transforming variables to normal distribution. The optimal gamma for the transformation
function was found by using divide and conquer to find the lowest skewness.

5.5 Discretization

In Section 4.3 we explained five discretization algorithms which are suitable for Naive
Bayes classifiers. To avoid zero probabilities in the conditional probability tables we
used a uniform dirichlet prior on the discrete nodes. We expected that these methods
would accomplish the same or better performance than the Naive Bayes network with
continuous nodes. However, the classification performance was somewhat disappointing.
Based on the results in Table 5.7 it seems that the performance decreases if the number
of intervals increase above a certain level. We used all 522 instances of our dataset
in this experiment, but apparently this may still be not enough to accurately define
the conditional probability tables of the discrete nodes. Furthermore, we found that
transforming the features to a normal distribution before discretizing them did not have
any effect on the performance.

Intervals Az value
EWD 10 0.7421 ± 0.0020 [0.7388;0.7418;0.7429;0.7431;0.7440]

EFD 6 0.7352 ± 0.0011 [0.7339;0.7345;0.7350;0.7356;0.7369]

NDD 65∗ 0.6832 ± 0.0048 [0.6791;0.6796;0.6821;0.6840;0.6910]

PKID 21 0.7403 ± 0.0030 [0.7368;0.7384;0.7394;0.7427;0.7439]

WPKID 6 0.7513 ± 0.0016 [0.7496;0.7507;0.7512;0.7513;0.7540]

Table 5.7: Area under ROC curve results of different discretization techniques and the number
of intervals (image based performance). ∗ With NDD there is an overlap between intervals.
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Figure 5.4: Bayesian network with hidden nodes

5.6 Hidden nodes

Additionally, we constructed a latent model (a Bayesian network with hidden, unob-
served nodes). While there are more complex latent models possible, we tried a simple
approach to see if the classification performance would increase if we add two hidden
nodes per view between two strong correlated features. In Figure 5.5 we see that f1
and f2 are linearly correlated with respectively f1mean and f2mean. We disconnected
these correlated nodes from the class node and placed a hidden node in between. The
hidden node is then connected to the class node as can be seen in Figure 5.4. We have
used Bayesian networks with discrete as well as with (normalized) continuous nodes,
and learned the parameters with the EM algorithm. To avoid zero probabilities in the
conditional probability tables we used a uniform dirichlet prior on the discrete nodes.
More sophisticated latent models incorporating Factor Analyzers were outside the scope
of this report, but may give much better results.
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Az value
EWD 0.7425 ± 0.0018 [0.7398;0.7414;0.7434;0.7438;0.7440]

EFD 0.7334 ± 0.0064 [0.7278;0.7283;0.7329;0.7341;0.7437]

NDD 0.5952 ± 0.0018 [0.5925;0.5943;0.5959;0.5963;0.5972]

PKID 0.6596 ± 0.0015 [0.6585;0.6589;0.6590;0.6594;0.6623]

WPKID 0.7347 ± 0.0077 [0.7282;0.7296;0.7337;0.7345;0.7476]

Gaussian (untouched) 0.6548 ± 0.0040 [0.6499;0.6533;0.6541;0.6560;0.6609]

Gaussian (normalized) 0.6629 ± 0.0047 [0.6580;0.6599;0.6611;0.6667;0.6689]

Table 5.8: Area under ROC curve results of using a simple latent model
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Figure 5.5: Scatter matrix plot of the strongly correlated stellate pattern features
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5.7 Dimensionality Reduction

In this section we will conduct several experiments to evaluate the classification perfor-
mance of the SVM and näıve Bayes classifier after applying dimensionality reduction.

5.7.1 Principal Component Analysis in combination with Näıve Bayes

The classification result of using PCA on the 24 combined MLO and CC features is
presented in Figure 5.6, it shows the classification performance in terms of the AUC
value (y axis) in respect to the dimension reduction (x axis). The principal component
vectors are calculated using the training set only. These PC vectors are then used to
transform both the training and test set. The best result is obtained in 14 dimensions
and remains almost constant when adding more dimensions.
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Figure 5.6: Performance näıve Bayes classifier after dimensionality reduction with PCA, averaged
over 5 runs.
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5.7.2 Fisher Discriminant Analysis in combination with Näıve Bayes

The classification result of using FDA on the 24 combined MLO and CC features is
presented in Figure 5.7, it shows the classification performance in terms of the AUC
value (y axis) in respect to the dimension reduction (x axis). The discriminant vectors
are calculated using the training set only. These discriminant vectors are then used to
transform both the training and test set. The best result is obtained in 10 dimensions
and remains almost constant when adding more discriminant vectors.

0 2 4 6 8 10 12 14 16 18 20 22 24
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Maximum AUC: 0.7367

Number of discriminant vectors

Pe
rf

o
rm

an
ce

 (A
U

C
 v

al
u

e)

Dimensionality Reduction with Fisher Linear Discrimant Analysis

Figure 5.7: Performance näıve Bayes classifier after dimensionality reduction with FDA, averaged
over 5 runs.
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5.7.3 PCA followed by FDA in combination with NB

In some literature FDA is used in combination with PCA to incorporate class informa-
tion [Joo03]. The classification result of using FDA on the 24 combined MLO and CC
features is presented in Figure 5.8, it shows the classification performance in terms of
the AUC value (y axis) in respect to the dimension reduction (x axis). The principal
components and discriminant vectors are calculated using the training set only. The
best result is then obtained in 24 dimensions, the same number of features we originally
began with.
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Figure 5.8: Performance näıve Bayes classifier after dimensionality reduction with PCA followed
by FDA, averaged over 5 runs.
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5.7.4 Principal Component Analysis in combination with SVM

The classification result of using PCA on the 24 combined MLO and CC features is
presented in Figure 5.9, it shows the classification performance in terms of the AUC
value (y axis) in respect to the dimension reduction (x axis). The principal component
vectors are calculated using the training set only. These PC vectors are then used to
transform both the training and test set. The best result is obtained in 6 dimensions.
Adding more principal components decreases performance.
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Figure 5.9: Performance SVM classifier with radial kernel function after dimensionality reduction
with PCA, averaged over 5 runs.
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5.7.5 Principal Component Analysis in combination with SVM using
all features

Here we used all the 81 features available for a single view. Some of these features are
obviously correlated with each other. We combined the MLO and CC view features in
the same way as in the latter experiments, resulting in 162 features per case. Using PCA
to reduce the number of dimensions led to the classification results shown in Figure 5.10.
It shows the classification performance in terms of the AUC value (y axis) in respect to
the dimension reduction (x axis). The best result is obtained in 10 dimensions.
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Figure 5.10: Performance SVM classifier with radial kernel function after dimensionality reduc-
tion of all features with PCA, averaged over 5 runs.
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5.7.6 Fisher Discriminant Analysis in combination with SVM using all
features

As with the previous experiment, we used all the 162 features available when combining
the MLO and CC view into one case. In this and the following experiment we increased
the number of dimensions with steps of 5 in order to decrease the computational time.
Using FDA to reduce the number of dimensions led to the classification results shown in
Figure 5.11. It shows the classification performance in terms of the AUC value (y axis)
in respect to the dimension reduction (x axis). The best result is obtained if we use all
the 160 dimensions, which differs from using PCA where adding more dimensions when
the maximum performance is reached will decrease the performance.
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Figure 5.11: Performance SVM classifier with radial kernel function after dimensionality reduc-
tion of all features using FDA, averaged over 5 runs.
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5.7.7 PCA followed by FDA in combination with SVM using all fea-
tures

Because FDA is often used in combination with PCA, we have tested the performance
of the SVM classifier using the combination of these two dimension reduction methods.
Again we use all the 162 features per case and increase the number of dimensions with
steps of 5. The results of this experiment is shown in Figure 5.12. It shows the clas-
sification performance in terms of the AUC value (y axis) in respect to the dimension
reduction (x axis). The best result is obtained if we use 100 or more dimensions and
remains almost steady when adding more dimensions.
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Figure 5.12: Performance SVM classifier with radial kernel function after dimensionality reduc-
tion of all features using PCA followed by FDA, averaged over 5 runs.
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6
Conclusions and Discussion

6.1 Normalizing

Like most other common Bayesian software packages, BNT [Mur01] assumes that within
each state of the class the observed continuous features follow a normal (Gaussian) dis-
tribution. The real world dataset we used contains features that do not follow a normal
distribution. We showed that the Box-Cox and Manly transformation methods improve
classification accuracy by transforming the distribution of the non-normal data closer to
the normal distribution. With these methods, the area below the ROC curve increased
from approximately 0.767 to 0.795, matching the performance of the SVM classifier.
However, we found that the transformation does not work for all data. Transforming
features that were already approximately normal even had a bad impact on the classifi-
cation performance. Also discrete variables were not a useful candidate. Other sophisti-
cated transformation methods have been developed, such as the quadratic discriminant
function [UOA02], and folded exponential transformations [Pie03], which could possibly
lead to better performance. Another approach for dealing with continuous variables in
näıve Bayes classifiers is using the kernel method [JL95], which uses a non-parameterized
approximation for a continuous variable by a sum of so called kernels. These approaches
or a combination of them could be beneficial but were outside the scope of this thesis.

6.2 Scaling

Support Vector Machines are sensitive to the distribution of the input values, because
it uses distances between data vectors. It turns out that if the features are centered
and scaled, SVM is more reliable. Commonly, the input features are first centered by
subtracting their mean, and scaled by dividing them by their standard deviation. We
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used two other scaling methods, one that transform features to a [−1,+1] range, and
a supervised scaling method. In our specific application they did not outperform the
generally used scaling method.

6.3 Dimension reduction

The most promising algorithm in this work has been the Principal Component Analysis.
One major drawback of Principal Component Analysis (PCA) is that it can eliminate
the dimension that is best for discriminating positive cases from negative cases, because
it is an unsupervised algorithm. If the data points are spread parallel on each side of the
linear separator, it is easy to see that the discriminating dimension will be eliminated.
Despite this problem, it performed very well with the Support Vector Machine and the
näıve Bayes classifier.

6.3.1 Näıve Bayes

Applying the PCA algorithm on the twelve MLO features and the twelve CC features
increased the näıve Bayes classifier performance and reached its maximum when using
14 principal components. This is probably due to the fact that PCA components are
independent of each other which conforms to the independent assumption of näıve Bayes.
Adding more components did not have any noticeable effect on the performance, because
the näıve Bayes classifier assigned very low weights to the added components.

The dimension reduction did however not surpass the performance gained using the
transformation methods. Transforming the features to a normal distribution after PCA
has been applied decreased the classification performance enormously due to the arbi-
trary distribution of the PCA components. This confirms the observation that these
transformation methods only work for certain distributions. Furthermore, it should be
noted that the underlying joint probability distribution of the model is not very useful
compared to a model with real feature variables where someone could see which feature
is responsible for a certain classification.

The Fisher Discriminant Analysis (FDA) is not so commonly used as PCA in this
research area. For a classification task FDA is often preferred above PCA because it is
a supervised algorithm, i.e., it incorporates class information. Surprisingly, FDA alone
was not able to outperform PCA. However using FDA after PCA has been applied,
increased the performance significantly.
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6.3.2 Support Vector Machines

Applying the PCA algorithm on the twelve MLO features and the twelve CC features did
not lead to a significant improvement in performance of the SVM classifier, though the
number of features needed for maximum performance was reduced to 6. Adding more
principal components decreased the performance enormously, confirming the observation
that SVM is highly sensitive to the number of dimensions, because it can be more difficult
to find a separating hyperplane when the number of dimensions increases.

The best classification performance we achieved in this work was by using Principal
Component Analysis on all available 162 features (81 features per view). The best
result was obtained at 10 dimensions, with an area under the ROC curve value of 0.811.
Using the supervised FDA algorithm with and without PCA did not lead to better
performance.

6.4 Discretization

We investigated several discretization techniques that were confirmed to provide good
results when used in combination with a näıve Bayes classifier. The two most simple
discretization techniques, Equal Frequency Discretization and Equal Width Discretiza-
tion, performed quite well when compared to the more complex techniques which are
basically variations on the EFD algorithm. Only WPKID accomplished a slight im-
provement of the classification performance. To avoid the empty cells in the conditional
probability tables which gave problems classifying unseen test data, we had to define
a uniform dirichlet prior. Lowering the number of intervals to avoid empty cells in the
CPT lead only to worse classification performance, due to underfitting the data.

6.5 Latent Models

To relax the conditional independence assumptions embedded in näıve Bayesian models,
we experimented with a new class of models, termed latent models. The learned hidden
nodes between strongly correlated features did not have a significant impact on the re-
sulting performance. Langseth and Nielsen [LN05] proposed new kinds of latent models,
such as the non-linear latent models combining a mixture of Factor Analyzers with a
näıve Bayes classifier. Unfortunately, there was no publicly available implementation
which we could use in our experiments.
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6.6 Combining Classifiers

One question that arises when studying the performance of both classifiers is whether a
combination of SVM and NB would lead to an increase in performance. To investigate
this we constructed a network with five SVM classifiers for five groups of similar features.
The output of the SVM classifiers was then classified with a NB classifier. For our dataset
the performance did not improve. One possible reason is that the performance using a
single classifier was already high to begin with.

6.7 Receiver Operator Characteristic

The main measure used for classification performance in this thesis is the area below
the Receiver-Operator Characteristic curve (i.e., Az value). It has the advantage that it
is widely used, independent of an arbitrarily selectable classification treshold, and also
independent of the prior probability of the two classes. A disadvantage is, that classifiers
with the same Az value can have quite different ROC curves. If the consequences of
misclassifications are not equally costly then one could prefer one classifier above the
other even though they have the same Az value. The Az value is therefore only a
global quality measure. There are two ways to calculate the Az value. Using the
first method, we have put all the labels and classifier outputs of all folds into one
TPF/FPF matrix whereupon we generated the ROC curve. The second method is
described in [WE05,BS00] where the final Az value is calculated by averaging the Az

values of each fold. Using the latter approach results in a slightly higher Az value. The
difference of the resulting Az values between both methods could be due to the small
number of data points per fold and because the cut-off value in the second method can
be different for each fold. Therefore we assumed that the first method is the most honest
one to calculate the performance and therefore used in all our experiments described in
this thesis.

6.8 Classification Performance

The overall conclusion of our thesis is that support vector machines are still the method
of choice if the aim is to maximize classification performance. Although Bayesian net-
works are not primarily designed for classification problems, did not perform drastically
lower and in some experiments even slightly better than the support vector machine clas-
sifier. However, the real potential of Bayesian networks lies in the qualitative properties
of the model, the causal relationships between variables, the possibility to incorporate
background information into the model, the capability to deal with missing data, and
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the use of hidden variables. To the best of our knowledge, Support Vector Machines
lack these features that could play an important role in the future when new datasets
are being constructed and more background knowledge become available.

6.9 Future research

Although the research described in this thesis has given a extensive comparison of mod-
els and techniques, and extended the work done previously, it has not exhausted the
possibilities of classification models. Some suggested extensions of the work done are:

• Capturing the temporal pattern in the sequence of mammograms by incorporating
information from prior and current views to model tumor behaviour over time.
Originally, this was planned to be part of this thesis but was left out due to time
constraints.

• Incorporate medical background knowledge of the breast cancer domain by adding
dependencies to the classification model.

• Improved Latent classification models combining a mixture of Factor Analyzers
with a näıve Bayes classifier.

• Building hybrid models by combining models of different types like Hidden Markov
Model with Support Vector Machines systems to obtain the best of both worlds.
An other interesting extension could be Bayesian Kernel Models, which can be
viewed as a combination of the Bayesian method and the kernel method. It could
tackle the nonlinearly problem with kernels as is done in the SVM approach, and
obtain estimation results within the classical Bayesian framework.

• Using a larger mammographic database and extract more features from the images.
In addition, non-visual features attached to the images such as age, with/without
children and family history could be interesting and relevant as additional at-
tributes for classification.

• Using an entropy-based discretization algorithm, which employs the Minimum
Description Length Principle as a preprocessing step to convert the continuous
attributes of the data set into discrete values.

• Projecting the data onto a lower dimensional space with kernel based methods.
All the non-kernel based dimension reduction algorithms we used have their kernel
equivalents, known as KFD and KPCA, which could in theory lead to higher levels
of accuracy.
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Matlab Code and Functions for

classifying with Bayesian Networks

The developed Matlab code which was used to classify with Bayesian networks, functions
for transformation, discretization and other supporting code, is available from our web-
site http://www.student.ru.nl/m.samulski/. Please note that the BNT toolkit [Mur01]
from Kevin Murphy is required to run most of this code. We will briefly explain their
purpose:

• manly.m
Implements Manly’s exponential transformation (which is a modification of the
Box-Cox transform) to make non-normal data resemble normal data by removing
skewness.

• johndraper.m
Implements John and Draper’s modulus function to adjust non-gaussian kurtosis
on symmetric data.

• searchgamma boxcox.m, searchgamma manly.m,
searchgamma johndraper.m
Searches for the optimal gamma for the specific transformation algorithms by using
a divide and conquer approach to find the best gamma that results in the lowest
skewness or kurtosis.

• discretizing EFD.m, discretizing EWD.m, discretizing NDD.m,
discretizing PKID.m, discretizing WPKID.m
Used for discretization of a dataset with continuous features applying the dis-
cretization algorithms described in this thesis.

• roc.m
Estimates the ROC (Receiver Operating Characteristic) curve and the area under
the ROC curve (AUC) for a two-class classifier using the trapezoidal rule which
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connect the points of the ROC curve with straight lines and sums the resulting
triangular areas.

• cv.m, cvinit.m, cvsplitpartition.m
These functions implement the cross-validation test method where a set of available
feature measurements and output classifier is divided into two parts: one part for
training and one part for testing. In this way several different networks, all trained
on the training set, can be compared on the test set.

• CV MLO CC singleview.m
CV MLO CC averaging.m
CV MLO CC combined.m
CV MLO CC combined pca.m
CV MLO CC combined fisher.m
CV MLO CC combined discrete EFD.m
CV MLO CC combined discrete EWD.m
CV MLO CC combined discrete NDD.m
CV MLO CC combined discrete PKID.m
CV MLO CC combined discrete WPKID.m
CV MLO CC singleview hiddennodes gaussian.m
CV MLO CC singleview hiddennodes GMM.m
CV MLO CC averaging.m
CV MLO CC averaging hiddennodes gaussian.m
CV MLO CC averaging hiddennodes GMM.m
CV MLO CC combined hiddennodes gaussian.m
CV MLO CC combined hiddennodes GMM.m
We used a certain naming convention for our Matlab implementations. The CV
stands for cross validation. In an early stage of our project we used also LOO
(leave-one-out) cross validation, but this code was not used for the experiments in
this thesis. This was also the case for MLO CC, we started out with MLO views
only but eventually the dataset with MLO and CC was used in all our experi-
ments. The third part of the filename gives the type of experiment (single view,
averaging and combined) corresponding with the naming used in this thesis. All
the implementations contain the structure learning algorithms NB, TAN, MWST,
K2, K2+T, K2-T, and MCMC and also the transformation and ROC functions
are incorporated. Other specific experiments, e.g., dimension reduction, that were
conducted are described in the fourth part of the filename (e.g., pca, fisher, hidden
nodes, discrete).

• CV MLO CC mixed SVM BN discrete.m
CV MLO CC mixed SVM BN gaussian.m
This code was a prototype of a hybrid network, combining five SVM classifiers
with one naive Bayes classifier, with discretized and continuous nodes.
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B
R Code for Support Vector Machines

In this appendix we briefly explain our developed R code for classifying with support
vector machines. It is primarily based on the previous work of Sheila Timp [Tim06],
which kindly supplied us her source code. It requires the e1071 library of the Department
of Statistics, TU Wien [DHL+05] and the ROC-R package [SSBL04] from the Max-
Planck-Institute of Informatics.

• SVM IMAGEBASED.R, SVM AVERAGED.R, SVM COMBINED.R
R source code for the three types of experiments we have done with the SVM
classifier:

1. Image based, where we do not make a distinction between MLO and CC
views

2. Averaged, where we average the classifier output of the MLO view with the
corresponding classifier output of the CC view

3. Combined, where we combine the 12 features of the MLO view with the 12
features of the CC view

• SVM IMAGEBASED LINEAR.R,
SVM IMAGEBASED POLYNOM.R,
SVM IMAGEBASED RADIAL.R,
SVM IMAGEBASED SIGMOID.R
Code that was used for the evaluation of the available SVM kernels, i.e. the linear,
polynomial, radial and the sigmoid kernel

• SVM COMBINED PCA.R,
SVM COMBINED FDA ONLY.R,
SVM COMBINED PCA FDA.R
Code for Support Vector Machines using the dimensionality techniques Principal
Component Analysis, Fisher Discriminant Analysis, and the combination of the
two, using the dataset with 24 features per case (12 MLO features and 12 CC
features combined).
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• SVM IMAGEBASED ALLFEATS PCA.R,
SVM IMAGEBASED ALLFEATS FDA ONLY.R,
SVM IMAGEBASED ALLFEATS PCA FDA.R
Same as the code before, only using the dataset with all available 162 features, 81
per view.
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